Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 5

Friday, November 17, 2017

Problem 1. (Centering Matrix)
For a set of column vectors $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)} \in \mathbb{R}^{k}$ and the centering matrix $\mathbf{E}_{k}=\mathbf{I}_{k}-\frac{1}{k} \mathbf{1}_{k} \mathbf{1}_{k}^{\mathrm{T}} \in$ $\mathbb{R}^{k \times k}$, let $\mathbf{X} \in \mathbb{R}^{n \times k}$ be $\mathbf{X}=\left[\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right]^{\mathrm{T}}$ and $\bar{x}^{(j)}=\frac{1}{k} \sum_{i=1}^{k} x_{i}^{(j)}$, where $x_{i}^{(j)}$ is the i-th entry of $\mathbf{x}^{(i)}$.
a) Show that $\mathbf{E}_{k} \mathbf{x}^{(j)}=\mathbf{x}^{(j)}-\bar{x}^{(j)} \mathbf{1}_{k}$.
b) Show that the (i, j)-th entry of $\mathbf{E}_{k} \mathbf{X}^{\mathrm{T}}$ is given by $x_{i}^{(j)}-\bar{x}^{(j)}$.
c) Show that $\sum_{i=1}^{k}\left(\mathbf{E}_{k} \mathbf{X}^{\mathrm{T}}\right)_{i, j}=0$ for any $j \in\{1,2, \ldots, n\}$.

Problem 2. (Characterization of Euclidean Distance Matrices)
a) Show that if $\mathbf{D}(\mathbf{X}) \in \mathbb{R}^{n \times n}$ is a distance matrix, then show that:

$$
-\frac{1}{2} \mathbf{D}^{(2)}(\mathbf{X})=\mathbf{X} \mathbf{X}^{T}-\mathbf{1}_{n} \hat{\mathbf{x}}^{T}-\hat{\mathbf{x}} \mathbf{1}^{T}
$$

where $\hat{\mathbf{x}}=\frac{1}{2}\left[\mathbf{x}_{1}^{T} \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}^{T} \mathbf{x}_{n}\right]^{T}$.
b) Consider $-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}$, which is non-negative definite and $\operatorname{rk}\left(-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}\right) \leq k$, then there exists $n \times k$ matrix \mathbf{X} such that

$$
-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}=\mathbf{X} \mathbf{X}^{T}, \text { and } \mathbf{X}^{T} \mathbf{E}_{n}=\mathbf{X}^{T} .
$$

c) A matrix with zero diagonal elements is called hollow matrix. Prove that if \mathbf{A} is a symmetric hollow matrix, then $\mathbf{A}=0$ if and only if $\mathbf{E}_{n} \mathbf{A} \mathbf{E}_{n}=0$.

Problem 3. (Spike model II)
Show that if $\beta>\sqrt{\gamma}$ then $(1+\beta)\left(1+\frac{\gamma}{\beta}\right)>(1+\sqrt{\gamma})^{2}$.

