Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 7

Friday, December 1, 2017
Problem 1. (Diffusion Map)
Suppose that a dataset is composed of n real vectors \mathbf{x}_{i} for $i=1,2, \ldots, n$, of dimension m $\left(\mathrm{x}_{i} \in \mathbb{R}^{m}\right)$.
a) In a diffusion map, which properties must be satisfied by kernel functions?
b) Could the following functions be used as valid kernel functions for diffusion maps? Please give a reason for your answer (one phrase per function is enough).

- $K_{1}\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)=\left\|\mathrm{x}_{j}-\mathrm{x}_{i}\right\|_{2}^{2}$,
- $K_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=1-\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|_{2}$,
- $K_{3}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\cos \left(\frac{\pi}{2}\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|_{2}\right)$ for $\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|_{2} \leq 1$, and zero elsewhere,
- $K_{4}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\max \left\{1-\left(\left\|\mathbf{x}_{j}\right\|_{2}^{2}-\mathbf{x}_{j}^{\mathrm{T}} \mathbf{x}_{i}\right), 0\right\}$.

Let the dataset be composed of the following 3 vectors $(n=3)$ of dimension $3(m=3)$

$$
\mathbf{x}_{1}^{\mathrm{T}}=\left(\begin{array}{lll}
1 & -1 & 1
\end{array}\right), \quad \mathbf{x}_{2}^{\mathrm{T}}=\left(\begin{array}{lll}
-1 & -1 & -1
\end{array}\right), \quad \mathbf{x}_{3}^{\mathrm{T}}=\left(\begin{array}{lll}
-1 & 1 & -1
\end{array}\right),
$$

and the kernel function be given by $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\max \left\{1-\frac{1}{6}\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|_{2}^{2}, 0\right\}$.
c) For the random walk of the diffusion map, a weight matrix \mathbf{W} is needed. Calculate the remaining weights of the following weight matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$:

$$
\mathbf{W}=\left[\begin{array}{ccc}
1 & w_{12} & 0 \\
w_{21} & 1 & w_{23} \\
0 & w_{32} & 1
\end{array}\right]
$$

d) In another application with $n=3$, the values of $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ lead to the following decomposition of the transition matrix \mathbf{M} :

$$
\mathbf{M}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
1 & 0 & -1
\end{array}\right]^{\mathrm{T}}
$$

The left and right eigenvectors of \mathbf{M} are denoted as $\boldsymbol{\phi}_{i}$ and $\boldsymbol{\psi}_{i}$ for $i=1,2,3$. The transition matrix \mathbf{M} can be expressed as $\mathbf{M}=\sum_{k=1}^{3} \lambda_{k} \phi_{k} \boldsymbol{\psi}_{k}^{\mathrm{T}}$. What are the values of λ_{k} for $k=1,2,3$?

Problem 2. (Diffusion Distance) Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be some points in \mathbb{R}^{p}, and the garph (V, E, \mathbf{W}) is constructed based on those points using a kernel function. Transition probability matrix is constructed accordingly. Suppose that the diffusion map of a vertex v_{i} is given by $\boldsymbol{\phi}_{t}\left(v_{i}\right)$. For any pair of nodes v_{i} and v_{j} in the graph, prove:

$$
\left\|\phi_{t}\left(v_{i}\right)-\phi_{t}\left(v_{j}\right)\right\|^{2}=\sum_{l=1}^{n} \frac{1}{\operatorname{deg}(l)}\left(\mathbb{P}\left(X_{t}=l \mid X_{0}=i\right)-\mathbb{P}\left(X_{t}=l \mid X_{0}=j\right)\right)^{2} .
$$

Problem 3. (Multiple Unit Eigenvalues of Stochastic Matrix) Suppose thet $G=(V, E, \mathbf{W})$ is a weighted graph with the symmetric weight matrix W. Suppose that the transition matrix of a random walk on this graph is denoted by \mathbf{M}.
a) Prove that \mathbf{M} has multiple eigenvalues eqaul to one if and only if the graph is disconnected.
b) If the underlying graph G is connected, prove that \mathbf{M} has an eigenvalue eqaul to -1 if and only if the graph is bipartite.

