Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 11

Monday, January 22, 2018

Problem 1. (Dual Problem for Linear and Quadratic Programming)
a) Consider the linear programming problem defined as follows:

$$
\begin{aligned}
\text { min } & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \preceq \mathbf{b}
\end{aligned}
$$

Find the dual problem.
b) Suppose that \mathbf{B} is positive definite matrix and consider the following quadratic programming:

$$
\begin{aligned}
\min & \mathbf{x}^{T} \mathbf{B} \mathbf{x} \\
\text { s.t. } & \mathbf{A} \mathbf{x} \preceq \mathbf{b} .
\end{aligned}
$$

Find the dual problem.
c) For $p \geq 1$, consider the following norm minimization problem:

$$
\begin{aligned}
\min & \|\mathbf{x}\|_{p} \\
\text { s.t. } & \mathbf{A x}=\mathbf{b} .
\end{aligned}
$$

Find the dual problem.

Problem 2. (Support Vector Machine for Non-separable Classes) Consider the following SVM optimization problem for a non-separable dataset:

$$
\begin{align*}
\min _{\mathbf{a}, b, \boldsymbol{\xi}} & \frac{1}{2}\|\mathbf{a}\|^{2}+c \sum_{i=1}^{n} \xi_{n} \\
\text { s.t. } & y_{i}\left(\mathbf{a}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \quad i=1, \ldots, n \tag{1}\\
& \xi_{i} \geq 0 \quad i=1, \ldots, n .
\end{align*}
$$

a) Find the dual problem of this optimization problem.
b) Suppose that support vectors and optimal \mathbf{a}^{\star} are given. Find the optimal \mathbf{b}^{\star}.

Problem 3. Support Vector Machines:

a) Suppose that a training dataset is composed of vectors $\mathbf{x}_{i} \in \mathbb{R}^{3}$ belonging to two classes. The class membership is indicated by the labels $y_{i} \in\{-1,+1\}$. Suppose that the dataset is separable. A Support vector machine is used to find the maximum-margin hyperplane $\mathbf{a}^{\mathrm{T}} \mathbf{x}+b=0$. The primal optimization problem gives the optimal \mathbf{a}^{\star} as $\left(\begin{array}{lll}1 & 3 & 0\end{array}\right)^{\mathrm{T}}$. Two support vectors with different labels are given as :

$$
\mathbf{x}_{1}^{\mathrm{T}}=\left(\begin{array}{lll}
1 & -1 & 1
\end{array}\right), \quad \mathbf{x}_{2}^{\mathrm{T}}=\left(\begin{array}{lll}
-1 & -1 & -1
\end{array}\right)
$$

Find the optimal value b^{\star}.

Consider another training dataset that is non-separable. The following dual problem is solved for a support vector machine

$$
\begin{aligned}
\max _{\lambda} & \sum_{i=1}^{6} \lambda_{i}-\frac{1}{2} \sum_{i, j} y_{i} y_{j} \lambda_{i} \lambda_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
\text { s.t. } & 0 \leq \lambda_{i} \leq 5 \quad \text { and } \quad \sum_{i=1}^{6} \lambda_{i} y_{i}=0 .
\end{aligned}
$$

The dataset with the outputs of the optimization problem are given in the following table.

Data	Label	Solution	Data	Label	Solution
$\mathbf{x}_{1}=\binom{1}{1}$	$y_{1}=-1$	$\lambda_{1}^{\star}=0$	$\mathbf{x}_{4}=\binom{0.5}{-0.5}$	$y_{4}=1$	$\lambda_{4}^{\star}=4.73$
$\mathbf{x}_{2}=\binom{2}{0}$	$y_{2}=-1$	$\lambda_{2}^{\star}=0.67$	$\mathbf{x}_{5}=\binom{-2}{1}$	$y_{5}=1$	$\lambda_{5}^{\star}=0.94$
$\mathbf{x}_{3}=\binom{0}{0}$	$y_{3}=-1$	$\lambda_{3}^{\star}=5$	$\mathbf{x}_{6}=\binom{0}{-1}$	$y_{6}=1$	$\lambda_{1}^{\star}=0$

b) Determine the support vectors.
c) Find the maximum-margin hyperplane by finding \mathbf{a}^{\star} and b^{\star}.

