Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 12

Monday, January 29, 2018
Problem 1. (SVM Kernel)
Let $K_{1}: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ and $K_{2}: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ be valid kernels for a support vector machine. Show that
a) $K(\mathbf{x}, \mathbf{y})=\alpha K_{1}(\mathbf{x}, \mathbf{y})$, where $\alpha>0$, is also a valid kernel.
b) $K(\mathbf{x}, \mathbf{y})=K_{1}(\mathbf{x}, \mathbf{y})+K_{2}(\mathbf{x}, \mathbf{y})$ is also a valid kernel.
c) $K(\mathbf{x}, \mathbf{y})=K_{1}(\mathbf{x}, \mathbf{y}) K_{2}(\mathbf{x}, \mathbf{y})$ is also a valid kernel.
d) $K(\mathbf{x}, \mathbf{y})=\langle\Phi(\mathbf{x}), \Phi(\mathbf{y})\rangle$ is also a valid kernel for any $\Phi: \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}$ with $d \in \mathbb{N}$.

Problem 2. Support Vector Machines:

a) Suppose that a training dataset is composed of vectors $\mathbf{x}_{i} \in \mathbb{R}^{3}$ belonging to two classes. The class membership is indicated by the labels $y_{i} \in\{-1,+1\}$. Suppose that the dataset is separable. A Support vector machine is used to find the maximum-margin hyperplane $\mathbf{a}^{\mathrm{T}} \mathbf{x}+b=0$. The primal optimization problem gives the optimal \mathbf{a}^{\star} as $\left(\begin{array}{lll}1 & 3 & 0\end{array}\right)^{\mathrm{T}}$. Two support vectors with different labels are given as :

$$
\mathbf{x}_{1}^{\mathrm{T}}=\left(\begin{array}{lll}
1 & -1 & 1
\end{array}\right), \quad \mathbf{x}_{2}^{\mathrm{T}}=\left(\begin{array}{lll}
-1 & -1 & -1
\end{array}\right)
$$

Find the optimal value b^{\star}. (3P)

Consider another training dataset that is non-separable. The following dual problem is solved for a support vector machine

$$
\begin{aligned}
\max _{\lambda} & \sum_{i=1}^{6} \lambda_{i}-\frac{1}{2} \sum_{i, j} y_{i} y_{j} \lambda_{i} \lambda_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
\text { s.t. } & 0 \leq \lambda_{i} \leq 5 \quad \text { and } \quad \sum_{i=1}^{6} \lambda_{i} y_{i}=0 .
\end{aligned}
$$

The dataset with the outputs of the optimization problem are given in the following table.

Data	Label	Solution	Data	Label	Solution
$\mathbf{x}_{1}=\binom{1}{1}$	$y_{1}=-1$	$\lambda_{1}^{\star}=0$	$\mathbf{x}_{4}=\binom{0.5}{-0.5}$	$y_{4}=1$	$\lambda_{4}^{\star}=4.73$
$\mathbf{x}_{2}=\binom{2}{0}$	$y_{2}=-1$	$\lambda_{2}^{\star}=0.67$	$\mathbf{x}_{5}=\binom{-2}{1}$	$y_{5}=1$	$\lambda_{5}^{\star}=0.94$
$\mathbf{x}_{3}=\binom{0}{0}$	$y_{3}=-1$	$\lambda_{3}^{\star}=5$	$\mathbf{x}_{6}=\binom{0}{-1}$	$y_{6}=1$	$\lambda_{1}^{\star}=0$

b) Determine the support vectors. (4P)
c) Find the maximum-margin hyperplane by finding \mathbf{a}^{\star} and b^{\star}. (6P)
d) Suppose that a kernel is given by $K(\mathbf{x}, \mathbf{y})=\left(2 \mathbf{x}^{T} \mathbf{y}+1\right)^{2}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$. Determine the feature mapping function $\phi(\mathbf{x})$, i.e., the function $\phi: \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}$ where $K(\mathbf{x}, \mathbf{y})=$ $\boldsymbol{\phi}(\mathbf{x})^{T} \boldsymbol{\phi}(\mathbf{y})$. Determine the dimension of the feature space. (6P)

Consider a training dataset that is separable and consists of vectors $\mathbf{x}_{i} \in \mathbb{R}^{p}$ with labels $y_{i} \in\{-1,+1\}$.
e) Write down the optimization problem for the kernel-based support vector machine using the kernel $K(\mathbf{x}, \mathbf{y})=\exp \left(-\gamma\|\mathbf{x}-\mathbf{y}\|^{2}\right)$. (3P)
f) Write down the kernel-based support vector machine classifier for this dataset. (3P)

Problem 3. (One-dimensional Linear Regression) Given n samples of $\left(x_{i}, y_{i}\right)$, consider the linear regression problem:

$$
y_{i}=\vartheta_{0}+\vartheta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n .
$$

Find ϑ_{0} and ϑ_{1}.

