
Fundamentals of Big Data Analytics

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 1
Friday, October 20, 2017

Problem 1. MNIST dataset (tensorflow version)
The MNIST dataset is commonly used for benchmarking purpose in machine learning
research. It contains images of handwritten digits from 0 to 9. Each image is 28 pixels in
height and 28 pixels in width, for a total of 784 pixels in total. Each pixel has a single
pixel-value associated with it, indicating the lightness or darkness of that pixel, with higher
numbers meaning darker. This pixel-value is an integer between 0 and 255, inclusive. The
data files train.csv and test.csv contain these gray-scale images of hand-drawn digits.
The first file contains data that should be used for designing (or training) a model, while
the second dataset is used for testing the obtained solution.
In this example we use the tensorflow library provided by Google for loading the MNIST
dataset, as well as the python libraries pyplot and numpy (for plotting and computing
numerical operations).

In [1]: import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

When using tensorflow there is a built-in solution for importing the MNIST dataset
within the tensorflow library. This spares us the work of loading and formating the data
contained in the aforementioned CSV files. Instead, we may import a data structure from
the tensorflow library as

In [2]: from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets("data/MNIST/", one_hot=True)

Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting data/MNIST/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting data/MNIST/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting data/MNIST/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting data/MNIST/t10k-labels-idx1-ubyte.gz

Note that, when loading the data, we enabled the one_hot option. One-hot refers to the
formatting style of the label vector(s) provided. For this dataset, there are 10 possible
labels corresponding to handwritten digits between 0 and 9. Then, for labeling an image,

it is sufficient to assign an integer number between 0 and 9 corresponding to its label.
Nevertheless, when using the aforementioned one-hot representation of the labels, every
image is labeled using a 10-dimensional vector with the value 1 in the entry corresponding
to its assigned label (i.e., the “hot” entry) and zero elsewhere. Later in this course we will
discuss the role of the one-hot format in the context supervised learning.
Up to this point, we have extracted the MNIST datset, which is composed of

• 70.000 images and associated labels.

When loading this dataset from the examples provided by the tensorflow library, these
70.000 images and labels are already portioned into 3 datasets:

In [3]: print("Size of:")
print("- Training-set:\t\t{}".format(len(data.train.labels)))
print("- Test-set:\t\t{}".format(len(data.test.labels)))
print("- Validation-set:\t{}".format(len(data.validation.labels)))

Size of:
- Training-set: 55000
- Test-set: 10000
- Validation-set: 5000

Each element of the dataset is a vector of dimension 784 = 28 × 28:

In [4]: print("shape of first entry:",data.train.images[0,:].shape)
print("shape of second entry:",data.train.images[1,:].shape)
print("shape of third entry:",data.train.images[2,:].shape)

shape of first entry: (784,)
shape of second entry: (784,)
shape of third entry: (784,)

As discussed, the label vectors inside data.train.labels are in a one-hot format. We
can extract the label number (between 0 and 9) by searching for the entry with maximum
value within the one-hot vector:

In [5]: print("label of first entry:",data.train.labels[0,:])
print("label of first entry:",data.train.labels[0,:].argmax())
print("label of second entry:",data.train.labels[1,:])
print("label of second entry:",data.train.labels[1,:].argmax())

label of first entry: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
label of first entry: 7
label of second entry: [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
label of second entry: 3

We now show that this images correspond to the handwritten digits ‘7’ and ‘3’ as expected.
Note that, in order to display these digits we must reshape the 784-dimensional image
vectors back into 28 × 28 images.

In [6]: plt.imshow(data.train.images[0,:].reshape([28,28]),cmap='binary')
plt.show()
plt.imshow(data.train.images[1,:].reshape([28,28]),cmap='binary')
plt.show()

