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Solution of Problem 1

a) The eigenvalues of S,, are solutions of det(S,, —I\) = 0. This leads to

14-X 14
—14 110— A

| = (14— X)(110—X) —14* = A2 — 124\ +1344 = (112—)\)(12—)\) = 0.
Hence, the diagonal matrix is determined by

112 0
A= ( 0 12) '

The eigenvectors S,, are solutions of S,,v = vA. In addition the eigenvectors should be
normalized, i.e., |[v|]| = 1. We obtain

].4 —14 U1 o U1 . 2 2
<_14 110) (112) =112 (1}2) = wvy=—Tv; and v]+v;=1,

T
which yields the normalized eigenvector (\/% \;7)10) for the eigenvalue 112. For the
next eigenvector we only need to swap the entries of the first eigen vector and change

T
the sign of one entry. This leads to the eigenvector (\/% ﬁ) for the eigenvalue 12.
Putting the eigenvectors together we deduce the matrix

1 17
V=— .
v/50 (—7 1)
b) The best projection matrix Q is determined by the first k& dominant eigenvectors v;

as QY v;vI where k is the dimension of the image. For a transformation of a
two-dimensional sample to a one-dimensional data (k=1), we obtain

1 1 1 1 1 =7
- (1 7)) =— .
Q @(4) @( ) =% (-7 49)
c) The residuum — max S 1Qx; — Qx,||? is equal to the sum S°F | A(S,,) of dominant

eigenvalues, that is equal to 112 in the present case.



Solution of Problem 2

b)

and the spectral decomposition is trivially given. V can be any orthogonal matrix and
A is the same as S,.

There is no single best projection matrix Q; every vector v gives a single dimensional

1
projection vvl. Just two examples: v = (O) and v = (g) The first projection matrix

o[t 3 = - () e ()

and the second projection matrix is given by

o-(1 ) = an- Q- ()

to transform the two-dimensional samples to a one-dimensional data and calculate the
projection of x; and Xs.

is given by

Solution of Problem 3

a)

b)

The dominant eigenvalue Agop, is visible when the ratio v, = n% is less than 33, . With

Baom = B2 = 0.5 we obtain ny;, = no = & = 2000. For this number of samples, the
2

dominant eigenvalue of the sample covariance S, tends to (1 +/72)* = (14 0.5)* =

2.25 > 1.5. The distance (vq, Vgom) = iﬁégf
distributions for this choice.

is equal to zero. Figure 1 shows eigenvalue

To see both eigenvalues the ratio 7, = n% must be less than 2. With 8 = 0.2 we

obtain n; = B% = 12500. For this number of samples, the dominant eigenvalue Agom, of
1
the sample covariance S,, tends to (14 32)(1+ 21) =1.5-1.08 =1.62~ 1.5 =1+ f.

The distance (v2, Vgom) = % is equal to 0.913 &~ 1 which shows that v, is nearly a

unit norm vector parallel to the dominant eigenvector vgon,. Figure 2 shows eigenvalue
distributions for this choice.

By enlarging n to 50000 both eigenvalues 3; and (5 become visible in the Marchenko-
Pastur density as shown in Figure 3.



35 Histogram of Eigenvalues, beta=0.2

— Marchenko Pasfur density
[ Empirical PDF

30N .

N
w
T

N
o
T

[
w
T

Empirical Density

y
o

Figure 1: Eigenvalues of S,, for Spike model with 5; = 0.2, 8, = 0.5, n = 2000
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Figure 2: Eigenvalues of S,, for Spike model with 5; = 0.2, 8, = 0.5, n = 12500
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Figure 3: Eigenvalues of S,, for Spike model with 5; = 0.2, 5, = 0.5, n = 50000



