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Solution of Problem 1

a) The eigenvalues of Sn are solutions of det(Sn − Iλ) = 0. This leads to∣∣∣∣∣14− λ −14
−14 110− λ

∣∣∣∣∣ = (14−λ)(110−λ)−142 = λ2−124λ+1344 = (112−λ)(12−λ) = 0 .

Hence, the diagonal matrix is determined by

Λ =
(

112 0
0 12

)
.

The eigenvectors Sn are solutions of Snv = vλ. In addition the eigenvectors should be
normalized, i.e., ‖v‖ = 1. We obtain(

14 −14
−14 110

)(
v1
v2

)
= 112

(
v1
v2

)
⇒ v2 = −7v1 and v2

1 + v2
2 = 1 ,

which yields the normalized eigenvector
(

1√
50

−7√
50

)T
for the eigenvalue 112. For the

next eigenvector we only need to swap the entries of the first eigen vector and change
the sign of one entry. This leads to the eigenvector

(
7√
50

1√
50

)T
for the eigenvalue 12.

Putting the eigenvectors together we deduce the matrix

V = 1√
50

(
1 7
−7 1

)
.

b) The best projection matrix Q is determined by the first k dominant eigenvectors vi
as Q∑k

i=1 vivT
i , where k is the dimension of the image. For a transformation of a

two-dimensional sample to a one-dimensional data (k=1), we obtain

Q = 1√
50

(
1
−7

)
1√
50
(
1 −7

)
= 1

50

(
1 −7
−7 49

)
.

c) The residuum 1
n−1 max

Q

∑n
i=1 ‖Qxi −Qx̄n‖2 is equal to the sum ∑k

i=1 λ(Sn) of dominant
eigenvalues, that is equal to 112 in the present case.



Solution of Problem 2

x1 =
(

1
0

)
, x2 =

(
−1
0

)
, x3 =

(
0
1

)
, x4 =

(
0
−1

)

a) The sample covariance matrix Sn is given by:

S4 =
(

1
2 0
0 1

2

)
.

and the spectral decomposition is trivially given. V can be any orthogonal matrix and
Λ is the same as S4.

b) There is no single best projection matrix Q; every vector v gives a single dimensional

projection vvT . Just two examples: v =
(

1
0

)
and v =

(
0
1

)
. The first projection matrix

is given by

Q =
(

1 0
0 0

)
=⇒ Qx1 =

(
1
0

)
,Qx2 =

(
−1
0

)
and the second projection matrix is given by

Q =
(

0 0
0 1

)
=⇒ Qx1 =

(
0
0

)
,Qx2 =

(
0
0

)
.

to transform the two-dimensional samples to a one-dimensional data and calculate the
projection of x1 and x2.

Solution of Problem 3

a) The dominant eigenvalue λdom is visible when the ratio γ2 = p
n2

is less than β2
dom. With

βdom = β2 = 0.5 we obtain nmin = n2 = p
β2

2
= 2000. For this number of samples, the

dominant eigenvalue of the sample covariance Sn tends to (1 +√γ2)2 = (1 + 0.5)2 =
2.25� 1.5. The distance 〈v2,vdom〉 = 1−γ1/β2

1
1−γ1/β1

is equal to zero. Figure 1 shows eigenvalue
distributions for this choice.

b) To see both eigenvalues the ratio γ1 = p
n1

must be less than β2
1 . With β1 = 0.2 we

obtain n1 = p
β2

1
= 12500. For this number of samples, the dominant eigenvalue λdom of

the sample covariance Sn tends to (1 + β2)(1 + γ1
β2

) = 1.5 · 1.08 = 1.62 ≈ 1.5 = 1 + β2.
The distance 〈v2,vdom〉 = 1−γ1/β2

2
1−γ1/β2

is equal to 0.913 ≈ 1 which shows that v2 is nearly a
unit norm vector parallel to the dominant eigenvector vdom. Figure 2 shows eigenvalue
distributions for this choice.
By enlarging n to 50000 both eigenvalues β1 and β2 become visible in the Marchenko-
Pastur density as shown in Figure 3.
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Figure 1: Eigenvalues of Sn for Spike model with β1 = 0.2, β2 = 0.5, n = 2000
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Figure 2: Eigenvalues of Sn for Spike model with β1 = 0.2, β2 = 0.5, n = 12500
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Figure 3: Eigenvalues of Sn for Spike model with β1 = 0.2, β2 = 0.5, n = 50000


