Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 5
 - Proposed Solution -

Friday, November 24, 2017

Solution of Problem 1

a)

$$
\begin{aligned}
\mathbf{E}_{k} \mathbf{x}^{(j)} & =\left(\mathbf{I}_{k}-\frac{1}{k} \mathbf{1}_{k} \mathbf{1}_{k}^{\mathrm{T}}\right) \mathbf{x}^{(j)}=\mathbf{x}^{(j)}-\frac{1}{k} \mathbf{1}_{k} \mathbf{1}_{k}^{\mathrm{T}} \mathbf{x}^{(j)}=\mathbf{x}^{(j)}-\frac{1}{k} \sum_{i=1}^{k} x_{i}^{(j)} \mathbf{1}_{k} \\
& =\mathbf{x}^{(j)}-\bar{x}^{(j)} \mathbf{1}_{k}
\end{aligned}
$$

b)

$$
\left(\mathbf{E}_{k} \mathbf{X}^{\mathrm{T}}\right)_{i j}=\left[\mathbf{E}_{k} \mathbf{x}^{(1)}, \mathbf{E}_{k} \mathbf{x}^{(2)}, \ldots, \mathbf{E}_{k} \mathbf{x}^{(n)}\right]_{i j}=\left(\mathbf{x}^{(j)}-\bar{x}^{(j)} \mathbf{1}_{k}\right)_{i}=x_{i}^{(j)}-\bar{x}^{(j)}
$$

c)

$$
\sum_{i=1}^{k}\left(\mathbf{E}_{k} \mathbf{X}^{\mathrm{T}}\right)_{i j}=\sum_{i=1}^{k}\left(x_{i}^{(j)}-\bar{x}^{(j)}\right)=\sum_{i=1}^{k} x_{i}^{(j)}-\sum_{i=1}^{k} \bar{x}^{(j)}=k \bar{x}^{(j)}-k \bar{x}^{(j)}=0
$$

Solution of Problem 2

a) Note that:

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=\mathbf{x}_{i}^{T} \mathbf{x}_{i}+\mathbf{x}_{j}^{T} \mathbf{x}_{j}-2 \mathbf{x}_{i}^{T} \mathbf{x}_{j}^{T}
$$

It is easy to check that:

$$
\left(\mathbf{X X}^{T}\right)_{i j}=\mathbf{x}_{i} \mathbf{x}_{j}^{T} .
$$

Consider $\hat{\mathbf{x}}=\frac{1}{2}\left[\mathbf{x}_{1}^{T} \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}^{T} \mathbf{x}_{n}\right]^{T}$. We have:

$$
\mathbf{1}_{n} \hat{\mathbf{x}}^{T}=\left[\begin{array}{ccc}
\frac{1}{2} \mathbf{x}_{1}^{T} \mathbf{x}_{1} & \ldots & \frac{1}{2} \mathbf{x}_{n}^{T} \mathbf{x}_{n} \\
\frac{1}{2} \mathbf{x}_{1}^{T} \mathbf{x}_{1} & \ldots & \frac{1}{2} \mathbf{x}_{n}^{T} \mathbf{x}_{n} \\
\vdots & \ddots & \vdots \\
\frac{1}{2} \mathbf{x}_{1}^{T} \mathbf{x}_{1} & \ldots & \frac{1}{2} \mathbf{x}_{n}^{T} \mathbf{x}_{n}
\end{array}\right]
$$

This means that $\left(\mathbf{1}_{n} \hat{\mathbf{x}}^{T}\right)_{i j}=\frac{1}{2} \mathbf{x}_{j}^{T} \mathbf{x}_{j}$ and moreover $\left(\hat{\mathbf{x}} \mathbf{1}_{n}^{T}\right)_{i j}=\frac{1}{2} \mathbf{x}_{i}^{T} \mathbf{x}_{i}$
Therefore:

$$
\left(-\frac{1}{2} \mathbf{D}^{(2)}(\mathbf{X})\right)_{i j}=(\mathbf{X X})_{i j}-\left(\mathbf{1}_{n} \hat{\mathbf{x}}^{T}\right)_{i j}-\left(\hat{\mathbf{x}} \mathbf{1}_{n}^{T}\right)_{i j} .
$$

The element-wise identity implies the desired identity.
b) Since $-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}{ }^{(2)} \mathbf{E}_{n}$ is non-negative definite and has the rank $\operatorname{rk}\left(-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}{ }^{(2)} \mathbf{E}_{n}\right) \leq k$, it can be written as:

$$
-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}=\sum_{i=1}^{k} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}
$$

where $\lambda_{1} \geq \cdots \geq \lambda_{k}$ are top k eigenvalues of the matrix $-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}$ with corresponding orthonormal eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$. This can be obtained from spectral decomposition of $-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}{ }^{(2)} \mathbf{E}_{n}$. Using this representation, the matrix \mathbf{X} can be constructed as $\mathbf{X}=$ $\left[\sqrt{\lambda_{1}} \mathbf{v}_{1}, \ldots, \sqrt{\lambda_{k}} \mathbf{v}_{k}\right]$. It can be seen that:

$$
\mathbf{X X} \mathbf{X}^{T}=\sum_{i=1}^{k} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}=-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}
$$

Moreover the image of $-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}$ is a subset of the image of \mathbf{E}_{n}. Therefore for all non-zero λ_{i}, the corresponding eigenvector \mathbf{v}_{i} belongs to the image of \mathbf{E}_{n} and since it is an orthogonal projection:

$$
\mathbf{E}_{n} \mathbf{v}_{i}=\mathbf{v}_{i}
$$

If $\lambda_{i}=0$, then trivially $\mathbf{E}_{n} \sqrt{\lambda_{i}} \mathbf{v}_{i}=\sqrt{\lambda_{i}} \mathbf{v}_{i}=0$. This means that:

$$
\mathbf{E}_{n} \mathbf{X}=\mathbf{X} \Longrightarrow \mathbf{X}^{T} \mathbf{E}_{n}=\mathbf{X}^{T}
$$

c) The direction where $\mathbf{A}=0$ is trivial. Let us assume $\mathbf{E}_{n} \mathbf{A} \mathbf{E}_{n}=0$. This means that the matrix \mathbf{A} takes each vector in the image of \mathbf{E}_{n} to the kernel of \mathbf{E}_{n}. Note that the kernel of \mathbf{E}_{n} is spanned by $\mathbf{1}_{n}$, so for each \mathbf{v} such that $\mathbf{v}^{T} \mathbf{1}_{n}=0$, we have:

$$
\exists \alpha \in \mathbb{R} ; \mathbf{A v}=\alpha \mathbf{1}_{n}
$$

Pich $\mathbf{v}=\mathbf{e}_{i}-\mathbf{e}_{j}$. The equation above implies that $(\mathbf{A v})_{i}=(\mathbf{A v})_{j} . \operatorname{But}(\mathbf{A v})_{k}=a_{k i}-a_{k j}$. Therefore:

$$
a_{i i}-a_{i j}=a_{j i}-a_{j j} .
$$

But $a_{k k}=0$ for all $1 \leq k \leq n$ and \mathbf{A} is symmetric. Therefore $a_{i j}=0$ for all i, j which means that $\mathbf{A}=0$.

Solution of Problem 3

We start by expanding the following difference

$$
\begin{aligned}
(1+\beta)\left(1+\frac{\gamma}{\beta}\right)-(1+\sqrt{\gamma})^{2} & =1+\frac{\gamma}{\beta}+\beta+\gamma-(1+2 \sqrt{\gamma}+\gamma)=\frac{\gamma}{\beta}+\beta-2 \sqrt{\gamma} \\
& =\frac{\gamma-2 \beta \sqrt{\gamma}+\beta^{2}}{\beta}=\frac{(\sqrt{\gamma}-\beta)^{2}}{\beta}
\end{aligned}
$$

Since $\beta>0$ we have that

$$
(1+\beta)\left(1+\frac{\gamma}{\beta}\right)-(1+\sqrt{\gamma})^{2}=\frac{(\sqrt{\gamma}-\beta)^{2}}{\beta}>0
$$

yielding

$$
(1+\beta)\left(1+\frac{\gamma}{\beta}\right)>(1+\sqrt{\gamma})^{2}
$$

which proves the statement.

