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Solution of Problem 1
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Solution of Problem 2

a) Note that:
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i xi + xT
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It is easy to check that:
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j .
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This means that (1nx̂T )ij = 1

2xT
j xj and moreover (x̂1T

n )ij = 1
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Therefore: (
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ij
= (XX)ij − (1nx̂T )ij − (x̂1T

n )ij.

The element-wise identity implies the desired identity.



b) Since −1
2En∆(2)En is non-negative definite and has the rank rk(−1

2En∆(2)En) ≤ k, it
can be written as:

−1
2En∆(2)En =

k∑
i=1

λivivT
i ,

where λ1 ≥ · · · ≥ λk are top k eigenvalues of the matrix −1
2En∆(2)En with corresponding

orthonormal eigenvectors v1, . . . ,vk. This can be obtained from spectral decomposition
of −1

2En∆(2)En. Using this representation, the matrix X can be constructed as X =
[
√
λ1v1, . . . ,

√
λkvk]. It can be seen that:

XXT =
k∑

i=1
λivivT

i = −1
2En∆(2)En.

Moreover the image of −1
2En∆(2)En is a subset of the image of En. Therefore for all

non-zero λi, the corresponding eigenvector vi belongs to the image of En and since it is
an orthogonal projection:

Envi = vi.

If λi = 0, then trivially En

√
λivi =

√
λivi = 0. This means that:

EnX = X =⇒ XT En = XT .

c) The direction where A = 0 is trivial. Let us assume EnAEn = 0. This means that the
matrix A takes each vector in the image of En to the kernel of En. Note that the kernel
of En is spanned by 1n, so for each v such that vT 1n = 0, we have:

∃α ∈ R; Av = α1n.

Pich v = ei−ej . The equation above implies that (Av)i = (Av)j . But (Av)k = aki−akj.
Therefore:

aii − aij = aji − ajj.

But akk = 0 for all 1 ≤ k ≤ n and A is symmetric. Therefore aij = 0 for all i, j which
means that A = 0.

Solution of Problem 3
We start by expanding the following difference
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Since β > 0 we have that
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β
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yielding
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β
) > (1 +√γ)2

which proves the statement.


