Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 6
 - Proposed Solution -

Friday, December 1, 2017

Solution of Problem 1

a) First of all, note that:

$$
\overline{\mathbf{x}}=\frac{1}{n} \mathbf{X} \mathbf{1}_{n} .
$$

Moreover:

$$
\mathbf{S}_{n}=\frac{1}{n-1}\left(\mathbf{X}-\overline{\mathbf{x}} \mathbf{1}_{n}^{T}\right)\left(\mathbf{X}-\overline{\mathbf{x}} \mathbf{1}_{n}^{T}\right)^{T} .
$$

Therefore:

$$
\mathbf{S}_{n}=\frac{1}{n-1}\left(\mathbf{X}-\frac{1}{n} \mathbf{X} \mathbf{1}_{n} \mathbf{1}_{n}^{T}\right)\left(\mathbf{X}-\frac{1}{n} \mathbf{X} \mathbf{1}_{n} \mathbf{1}_{n}^{T}\right)^{T}=\frac{1}{n-1} \mathbf{X} \mathbf{E}_{n} \mathbf{E}_{n}^{T} \mathbf{X}^{T} .
$$

Using $\mathbf{E}_{n} \mathbf{E}_{n}=\mathbf{E}_{n}$, we have \mathbf{S}_{n} is equal to $\frac{1}{n-1} \mathbf{X} \mathbf{E}_{n} \mathbf{X}^{T}$.
b) The result of PCA is $\mathbf{Q}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)$. This is indeed equal to $\mathbf{Q}\left(\mathbf{x}_{i}-\frac{1}{n} \mathbf{X} \mathbf{1}_{n}\right)$. Constructing the matrix \mathbf{X} as suggested, the projected points can be written as:

$$
\mathbf{Q}\left(\mathbf{X}-\frac{1}{n} \mathbf{X} \mathbf{1}_{n} \mathbf{1}_{n}^{T}\right)=\mathbf{Q} \mathbf{X E} \mathbf{E}_{n}
$$

c) Let the singular value decomposition of $\mathbf{X E}_{n}$ be:

$$
\mathbf{X} \mathbf{E}_{n}=\mathbf{U}_{p \times p} \boldsymbol{\Lambda} \mathbf{V}_{n \times p}{ }^{T} .
$$

It is known that:

$$
\mathbf{S}_{n}=\frac{1}{n-1} \mathbf{U} \boldsymbol{\Lambda}^{2} \mathbf{U}^{T}
$$

and top k eigenvectors of \mathbf{S}_{n} are given therefore by picking first k columns of \mathbf{U}, denoted by \mathbf{U}_{k}. In any case, we have:

$$
\mathbf{U}_{k}^{T} \mathbf{X}=\left[\begin{array}{ccc}
\mathbf{u}_{1}^{T} \mathbf{x}_{1} & \ldots & \mathbf{u}_{1}^{T} \mathbf{x}_{n} \\
\vdots & \ddots & \vdots \\
\mathbf{u}_{k}^{T} \mathbf{x}_{1} & \ldots & \mathbf{u}_{k}^{T} \mathbf{x}_{n}
\end{array}\right]=\left[\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{n}\right]
$$

where $\hat{\mathbf{x}}_{i}$ is the projected point into the k dimensional subspace. From the previous point, the projected points are given by $\mathbf{U}_{k}^{T} \mathbf{X} \mathbf{E}_{n}$.
See that:

$$
\mathbf{U}_{k}^{T} \mathbf{X} \mathbf{E}_{n}=\mathbf{U}_{k}^{T} \mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{T}
$$

But :

$$
\mathbf{U}_{k}^{T} \mathbf{U}=\left[\begin{array}{ccc}
\mathbf{u}_{1}^{T} \mathbf{u}_{1} & \ldots & \mathbf{u}_{1}^{T} \mathbf{u}_{p} \\
\vdots & \ddots & \vdots \\
\mathbf{u}_{k}^{T} \mathbf{u}_{1} & \ldots & \mathbf{u}_{k}^{T} \mathbf{u}_{p}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{I}_{k} & \mathbf{0}_{k \times p-k}
\end{array}\right] .
$$

Using the fact that $\Lambda_{i i}^{2}=\lambda_{i}$, we have:

$$
\mathbf{U}_{k}^{T} \mathbf{U} \boldsymbol{\Lambda}=\left[\begin{array}{ll}
\mathbf{I}_{k} & \mathbf{0}_{k \times p-k}
\end{array}\right] \boldsymbol{\Lambda}=\left[\operatorname{diag}\left(\sqrt{\lambda_{1}}, \sqrt{\lambda}_{2}, \ldots, \sqrt{\lambda}_{k}\right)_{k \times k} \quad \mathbf{0}_{k \times p-k}\right]
$$

Now write $\mathbf{V}=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{p}\right]$ where $\mathbf{v}_{i} \in \mathbb{R}^{n}$. We have:

$$
\mathbf{U}_{k}^{T} \mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{T}=\left[\operatorname{diag}\left(\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}, \ldots, \sqrt{\lambda}_{k}\right)_{k \times k} \quad \mathbf{0}_{k \times p-k}\right] \mathbf{V}^{T}=\left[\begin{array}{c}
\sqrt{\lambda_{1}} \mathbf{v}_{1}^{T} \\
\vdots \\
\sqrt{\lambda_{k}} \mathbf{v}_{k}^{T}
\end{array}\right]
$$

d) MDS starts by finding $-\frac{1}{2} \mathbf{E}_{n} \mathbf{D}^{(2)} \mathbf{E}_{n}$ which is $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}$ for Euclidean distance matrix. The spectral decomposition of $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}$ is then found by $\hat{\mathbf{V}} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \hat{\mathbf{V}}^{T}$ where $\hat{\mathbf{V}}=\left[\hat{\mathbf{v}}_{1} \ldots \hat{\mathbf{v}}_{n}\right]$ is the eigenvector matrix. Using SVD of $\mathbf{X E}_{n}$ above we get:

$$
\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}=\mathbf{V} \boldsymbol{\Lambda}^{2} \mathbf{V}^{T}
$$

Therefore if $\mathbf{V}=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{p}\right]$, then for $i=1, \ldots, p$ we have:

$$
\hat{\mathbf{v}}_{i}=\mathbf{v}_{i} .
$$

The solution to MDS is then $\mathbf{X}^{* T}=\left[\sqrt{\lambda_{1}} \mathbf{v}_{1}, \ldots, \sqrt{\lambda_{k}} \mathbf{v}_{k}\right] \in \mathbb{R}^{n \times k}$. This means that:

$$
\mathbf{U}_{k}^{T} \mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{T}=\mathbf{X}^{*}
$$

It shows that applying MDS on the distance matrix $\mathbf{D}(\mathbf{X})$ provides the same result as PCA.

Remark: There is another way of showing this equivalence. Note that $\mathbf{S}_{n}=\frac{1}{n-1} \mathbf{X E}_{n} \mathbf{X}^{T}$ and let $\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}$ be its spectral decomposition. Suppose that (λ, \mathbf{u}) is eigenvalue-eigenvector of $\mathbf{X E} \mathbf{E}_{n} \mathbf{X}^{T}=\left(\mathbf{X E}_{n}\right)\left(\mathbf{X E}_{n}\right)^{T}$. Then:

$$
\left(\mathbf{X E}_{n}\right)^{T}\left(\mathbf{X E}_{n}\right)\left(\mathbf{X E}_{n}\right)^{T} \mathbf{u}=\lambda\left(\mathbf{X E}_{n}\right)^{T} \mathbf{u} .
$$

This means that $\left(\mathbf{X E}_{n}\right)^{T} \mathbf{u}=\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{u}$ is an eigenvector of $\left(\mathbf{X E}_{n}\right)^{T}\left(\mathbf{X E}_{n}\right)=\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}$ and λ is its eigenvalue. So top k eigenvalues of $\mathbf{X E}_{n} \mathbf{X}^{T}$ remains the same for $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}$. Therefore $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{u}_{1}, \ldots \mathbf{E}_{n} \mathbf{X}^{T} \mathbf{u}_{k}$ are top k eigenvectors of $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}$. They are orthogonal but they do not have unit norm:

$$
\mathbf{u}^{T}\left(\mathbf{X E}_{n}\right)\left(\mathbf{X E}_{n}\right)^{T} \mathbf{u}=\mathbf{u}^{T} \lambda \mathbf{u}=\lambda
$$

Therefore a normalization by $\frac{1}{\sqrt{\lambda}}$ is needed. So top k eigenvectors of $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}$ is given by $\frac{1}{\sqrt{\lambda_{1}}} \mathbf{E}_{n} \mathbf{X}^{T} \mathbf{u}_{1}, \ldots, \frac{1}{\sqrt{\lambda_{k}}} \mathbf{E}_{n} \mathbf{X}^{T} \mathbf{u}_{k}$. Therefore $\mathbf{X}_{\mathrm{MDS}}^{*}$ is given by:

$$
\mathbf{X}_{\mathrm{MDS}}^{*}=\left[\begin{array}{c}
\sqrt{\lambda_{1}} \mathbf{v}_{1}^{T} \\
\vdots \\
\sqrt{\lambda_{k}} \mathbf{v}_{k}^{T}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{\lambda_{1}}\left(\frac{1}{\sqrt{\lambda_{1}}} \mathbf{E}_{n} \mathbf{X}^{T} \mathbf{u}_{1}\right)^{T} \\
\vdots \\
\sqrt{\lambda_{k}}\left(\frac{1}{\sqrt{\lambda_{k}}} \mathbf{E}_{n} \mathbf{X}^{T} \mathbf{u}_{k}\right)^{T}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X} \mathbf{E}_{n} \mathbf{u}_{1}^{T} \\
\vdots \\
\mathbf{X} \mathbf{E}_{n} \mathbf{u}_{k}^{T}
\end{array}\right]=\mathbf{U}_{k}^{T} \mathbf{X} \mathbf{E}_{n} .
$$

But we have seen above that $\mathbf{U}_{k}^{T} \mathbf{X} \mathbf{E}_{n}$ is X_{PCA}^{*} and therefore the desired result follows.

Solution of Problem 2

Consider four samples in \mathbb{R}^{3} given as follows:

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right] \mathbf{x}_{3}=\left[\begin{array}{c}
-4 \\
2 \\
2
\end{array}\right] \mathbf{x}_{4}=\left[\begin{array}{c}
-3 \\
-1 \\
4
\end{array}\right] .
$$

MDS steps are as follows:
a) Find $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X E}_{n}$ where $\mathbf{X}=\left[\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right]$.

In this step, \mathbf{X} is obtained as:

$$
\mathbf{X}=\left[\begin{array}{cccc}
1 & 3 & -4 & -3 \\
2 & -1 & 2 & -1 \\
-3 & -2 & 2 & 4
\end{array}\right]
$$

We have:

$$
\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X E}_{n}=\left[\begin{array}{cccc}
15.875 & 11.625 & -9.125 & -18.375 \\
11.625 & 21.375 & -18.375 & -14.625 \\
-9.125 & -18.375 & 15.875 & 11.625 \\
-18.375 & -14.625 & 11.625 & 21.375
\end{array}\right]
$$

b) Find spectral decomposition of $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}=\mathbf{V} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mathbf{V}^{T}$.

For this example eigenvalues and eigenvectors are given by:

$$
\begin{gathered}
\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left[\begin{array}{c}
61 \\
13.5 \\
0 \\
0
\end{array}\right] \\
\mathbf{V}=\left[\begin{array}{cccc}
-0.45267873 & 0.5 & -0.65666815 & 0.25502096 \\
-0.54321448 & -0.5 & -0.31320188 & -0.63102251 \\
0.45267873 & 0.5 & -0.28197767 & -0.71157191 \\
0.54321448 & -0.5 & -0.62544394 & 0.17447155
\end{array}\right]
\end{gathered}
$$

c) \mathbf{X}^{*} is given by $\left[\sqrt{\lambda_{1}} \mathbf{v}_{1}, \ldots, \sqrt{\lambda_{k}} \mathbf{v}_{k}\right]^{T}$.

$$
\mathbf{X}^{* T}=\left[\begin{array}{cc}
-3.53553391 & 1.83711731 \\
-4.24264069 & -1.83711731 \\
3.53553391 & 1.83711731 \\
4.24264069 & -1.83711731
\end{array}\right]
$$

Checking with PCA process, similar output is found.

Solution of Problem 3

(Isomap) Consider five vectors $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ and \mathbf{E} given as follows

$$
\mathbf{A}=\binom{0}{3}, \mathbf{B}=\binom{2}{0}, \mathbf{C}=\binom{-3}{0}, \mathbf{D}=\binom{0}{-1}, \mathbf{E}=\binom{-4}{4} .
$$

a) The following figure shows when 1NN and 2NN is used for graph construction. For 1 NN graph $\delta(\mathbf{E}, \mathbf{D})$ is determined by a single path and is given by $\sqrt{10}+\sqrt{17}$. For 2 NN graph, $\delta(\mathbf{E}, \mathbf{D})$ is the minimum of $\sqrt{32}$ and $\sqrt{10}+\sqrt{17}$, which is already known from triangle inequality, and it is $\sqrt{32}$. In both examples, it is clear that the geodesic estimation is wrong and particularly worse for 2NN.
b) The smallest distance is given by the distance of \mathbf{D} and \mathbf{B}. Therefore for $\epsilon<\sqrt{5}$, the graph consists of isolated points.
For $\epsilon \in[\sqrt{5}, \sqrt{10})$, there is only a single edge between \mathbf{D} and \mathbf{B}; for $\epsilon \in[\sqrt{10}, \sqrt{13})$ two edges appear between \mathbf{D}, \mathbf{B} and \mathbf{C}, \mathbf{D}. The analysis go on accordingly. The graph becomes connect only if $\epsilon \geq \sqrt{ } 17$; for $\epsilon=\sqrt{ } 17$, the following graph is obtained. When ϵ

starts to go above 5 more edges appear and the graph becomes ultimately fully connected for $\epsilon>\sqrt{52}$.

