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Solution of Problem 1

a) First of all, note that:
x = 1

n
X1n.

Moreover:
Sn = 1

n− 1(X− x1Tn )(X− x1Tn )T .

Therefore:

Sn = 1
n− 1(X− 1

n
X1n1Tn )(X− 1

n
X1n1Tn )T = 1

n− 1XEnET
nXT .

Using EnEn = En, we have Sn is equal to 1
n−1XEnXT .

b) The result of PCA is Q(xi − x). This is indeed equal to Q(xi − 1
n
X1n). Constructing

the matrix X as suggested, the projected points can be written as:

Q(X− 1
n

X1n1Tn ) = QXEn.

c) Let the singular value decomposition of XEn be:

XEn = Up×pΛVn×p
T .

It is known that:
Sn = 1

n− 1UΛ2UT ,

and top k eigenvectors of Sn are given therefore by picking first k columns of U, denoted
by Uk. In any case, we have:

UT
kX =


uT1 x1 . . . uT1 xn
... . . . ...

uTk x1 . . . uTk xn

 = [x̂1, . . . , x̂n],

where x̂i is the projected point into the k dimensional subspace. From the previous
point, the projected points are given by UT

kXEn.
See that:

UT
kXEn = UT

kUΛVT .



But :

UT
kU =


uT1 u1 . . . uT1 up
... . . . ...

uTku1 . . . uTkup

 = [Ik 0k×p−k].

Using the fact that Λ2
ii = λi, we have:

UT
kUΛ = [Ik 0k×p−k]Λ = [diag(

√
λ1,
√
λ2, . . . ,

√
λk)k×k 0k×p−k]

Now write V = [v1 . . .vp] where vi ∈ Rn. We have:

UT
kUΛVT = [diag(

√
λ1,
√
λ2, . . . ,

√
λk)k×k 0k×p−k]VT =


√
λ1vT1
...√
λkvTk


d) MDS starts by finding −1

2EnD(2)En which is EnXTXEn for Euclidean distance matrix.
The spectral decomposition of EnXTXEn is then found by V̂ diag(λ1, . . . , λn)V̂T where
V̂ = [v̂1 . . . v̂n] is the eigenvector matrix. Using SVD of XEn above we get:

EnXTXEn = VΛ2VT .

Therefore if V = [v1 . . .vp], then for i = 1, . . . , p we have:

v̂i = vi.

The solution to MDS is then X∗T = [
√
λ1v1, . . . ,

√
λkvk] ∈ Rn×k. This means that:

UT
kUΛVT = X∗.

It shows that applying MDS on the distance matrix D(X) provides the same result as
PCA.

Remark: There is another way of showing this equivalence. Note that Sn = 1
n−1XEnXT

and let UΛUT be its spectral decomposition. Suppose that (λ,u) is eigenvalue-eigenvector of
XEnXT = (XEn)(XEn)T . Then:

(XEn)T (XEn)(XEn)Tu = λ(XEn)Tu.

This means that (XEn)Tu = EnXTu is an eigenvector of (XEn)T (XEn) = EnXTXEn and λ
is its eigenvalue. So top k eigenvalues of XEnXT remains the same for EnXTXEn. Therefore
EnXTu1, . . .EnXTuk are top k eigenvectors of EnXTXEn. They are orthogonal but they do
not have unit norm:

uT (XEn)(XEn)Tu = uTλu = λ.

Therefore a normalization by 1√
λ
is needed. So top k eigenvectors of EnXTXEn is given by

1√
λ1

EnXTu1, . . . ,
1√
λk

EnXTuk. Therefore X∗MDS is given by:

X∗MDS =


√
λ1vT1
...√
λkvTk

 =


√
λ1( 1√

λ1
EnXTu1)T
...√

λk( 1√
λk

EnXTuk)T

 =


XEnuT1

...
XEnuTk

 = UT
kXEn.

But we have seen above that UT
kXEn is X∗PCA and therefore the desired result follows.



Solution of Problem 2
Consider four samples in R3 given as follows:

x1 =

 1
2
−3

 ,x2 =

 3
−1
−2

x3 =

−4
2
2

x4 =

−3
−1
4

 .
MDS steps are as follows:

a) Find EnXTXEn where X = [x1 . . .xn].
In this step, X is obtained as:

X =

 1 3 −4 −3
2 −1 2 −1
−3 −2 2 4


We have:

EnXTXEn =


15.875 11.625 −9.125 −18.375
11.625 21.375 −18.375 −14.625
−9.125 −18.375 15.875 11.625
−18.375 −14.625 11.625 21.375


b) Find spectral decomposition of EnXTXEn = V diag(λ1, . . . , λn)VT .

For this example eigenvalues and eigenvectors are given by:

diag(λ1, . . . , λn) =


61

13.5
0
0



V =


−0.45267873 0.5 −0.65666815 0.25502096
−0.54321448 −0.5 −0.31320188 −0.63102251
0.45267873 0.5 −0.28197767 −0.71157191
0.54321448 −0.5 −0.62544394 0.17447155


c) X∗ is given by [

√
λ1v1, . . . ,

√
λkvk]T .

X∗T =


−3.53553391 1.83711731
−4.24264069 −1.83711731
3.53553391 1.83711731
4.24264069 −1.83711731


Checking with PCA process, similar output is found.

Solution of Problem 3
(Isomap) Consider five vectors A,B,C,D and E given as follows

A =
(

0
3

)
,B =

(
2
0

)
,C =

(
−3
0

)
,D =

(
0
−1

)
,E =

(
−4
4

)
.



−4 −2 2

−4

−2

2
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a) The following figure shows when 1NN and 2NN is used for graph construction. For
1NN graph δ(E,D) is determined by a single path and is given by

√
10 +

√
17. For

2NN graph, δ(E,D) is the minimum of
√

32 and
√

10 +
√

17, which is already known
from triangle inequality, and it is

√
32. In both examples, it is clear that the geodesic

estimation is wrong and particularly worse for 2NN.

b) The smallest distance is given by the distance of D and B. Therefore for ε <
√

5, the
graph consists of isolated points.
For ε ∈ [

√
5,
√

10), there is only a single edge between D and B; for ε ∈ [
√

10,
√

13)
two edges appear between D,B and C,D. The analysis go on accordingly. The graph
becomes connect only if ε ≥

√
17; for ε =

√
17, the following graph is obtained. When ε

starts to go above 5 more edges appear and the graph becomes ultimately fully connected
for ε >

√
52.


