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Solution of Problem 1
(Diffusion Map)

a) A kernel function K(x;,x;) of a diffusion map must follow the following properties:

e Symmetry: K(x;,x;) = K(x;,%;),

e Non-negativity: K(x;,x;) >0,

o Locality: If ||x; — x| — oo then K(x;,x;) — 0. If ||x; — x;|lo — O then
K(x;,x;) — L

b) e Ki(x;,x;) = [x; — x;]|*: No, locality is violated.
o Ky(x;,%x;) =1—||x; — x;[|2: No, non-negativity and locality are violated.
o K3(xi,x;) = cos(5||x; — x4|2) for [|x; — x|z < 1, and zero elsewhere: : Yes, this

could be a kernel function.

o Ky(x,x;) = max{l — (||x;|I3 — xx;),0}: No, symmetry is violated.

K(Xl,Xl) K(Xl,X2> K(Xl,X;g) 1
W = K(X27X1> K(Xz,Xg) K(XQ,Xg) = {0
K(X37X1> K(Xg,Xg) K(Xg,Xg) 0

Wi = O
—wie O

d) We know that M can be decomposed as M = ®AWT where ® and ¥ are bi-orthogonal
(i.e., ®TW = I3). We observe that the provided expression follows the same form,
sicne the columns corresponding to the left and right eigenvectors of M are orthogonal.
Nevertheless, these columns are not properly scaled since

T

1 0 1 1 0 1 2 00
0v2 0| [0 V2 0]=10 2 0 =24
1 0 -1 1 0 -1 0 0 2
Therefore, by properly normalizing the provided relation we obtain M = ®APT as
Lo 300 1 0 17\
M=|—=1{0 v2 0 210 2 0| |—=1[0 v2 0O
V2 1 0 -1 0 01 V2 1 0 -1
= ®APT

Therefore, since A = diag(Ax)r=123, we have that \; =6, Ay =4 and A3 = 2.



Solution of Problem 2
First of all, see that:
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Note that D~Y/2® is equal to V, the eigenvalue matrix in spectral decomposition of S.
Therefore D~/24p,’s are orthonormal, and we have:
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Solution of Problem 3
a) Forward direction:

If the graph is disconnected, then the vertex set V' can be partitioned into two sets A
and B such that no edge exists between A and B. In the transition matrix M, non-zero
entries appear only on the entries inside A x A and B x B. Let M¢ p is constructed as
the submatrix of M by choosing rows from the set C' and columns from the set D. Then
My 4 and Mp g are both transition matrices on their own. Then x4 and xp are both
eigenvectors of those matrices with eigenvalues equal to one, where x4 = (xa(%))1<i<n,
with xa(z) = 0if z ¢ A and ya(z) =1 if x € A. Therefore there are at least two
eigenvalues equal to one in this case.

Reverse direction:

Suppose that there is more than one eigenvalue equal to one.
However, it is known that |[Az| <1 for all eigenvalues of M.

Let m = (my,...,m,)" be the eigenvector corresponding to Ay = 1. If |my| =
maxi<;<n |m;|, we have:

PHIED SRV SR VIR
j=1 || j=1
The equality obtains if % = 1 for those j where M;; # 0 and m;’s have those same

sign. We can assume that m; = 1. Define the the set A as:

A={k:my =1}



b)

Since the first eigenvector is 1,,, the second eigenvector should be different and hence
A#{1,...,n} and A° # (). For each k € A, we have:

j=1

Note that 327 ; My; = 1 and m; <1 for j € A°. Therefore to have the equality, again
m; = 1 whenever Mj; # 0. In other words, M;; = 0 for j € A° and ¢« € A. Since
M;; = ﬁigi), M;; =0 for j € A° and i € A. In other words there is no edge between the
nodes of A and A°. Hence the graph is disconnected.

Similar argument can be used by looking at my, k € A°. Since My,; = 0 for ¢ € A, then
> jeae Miym; = my. Taking a k& maximum absolute value entry and applying the same
argument, another set B can be constructed having m; = my, for j € B (this time we
do not have my, = 1). The set B represents another connected component of the graph.
The process can be continued by removing the previous connected components from the
graph and analysing again the remaining graph.

Forward direction:

If the graph is bipartite, then the vertex set V' can be partitioned into two sets A and B
such that no edge exists inside A and inside B but only between them. In the transition
matrix M, non-zero entries appear only on the entries inside A x B and B x A. Without
loss of generality assume that A = {1,...,l} and B={l+1,...,n}. Then:

M [1,4] _ [ 044 Maxs| [14 _ |04
05|  [Mpxa Opxp| |05] |15
M 04] _ (044 Muaxp| [04] _ [1,4]
1z  |Mpxa Opxp| 1] |05]

That implies:
10| |—14
AR
Therefore —1 is an eigenvalue.

Reverse direction:

Suppose that Ay = —1 is an eigenvalue. If |m;| = maxi<;<, |m;|, we have:

m n
NE ZM ,f <y
Since A = —1, the equality obtains if m; = —my for those j where M;; # 0. We can
assume that m; = 1. Define the the sets A_;, Ay, Ag as:
Aqg={k:mpy=—-1} A ={k:mp =1}, Ao = {k : |my| # 1}.
For each k € A_;, we have:
Z ]\/[kjmj =1.

Jj=1



This means that if £ € A_y, then m; =1 for Mj; # 0. In other words, if m; # 1 then
Mj,; = 0, which is:
Mkj =0for ke Afl,j € Ai

In other words no edge exists between the vertices inside A_1, also there is no edge from
A_1 to Ay. The edges from A_; go only to A;.

Similarly for each k € Ay, we have:

Z Mkjmj = —1.
j=1
This means that if & € Ay, then m; = —1 for Mj; # 0. In other words, if m; # —1 then
My; = 0, which is:
Mkj =0forke A, j€ Ac_l

In other words no edge exists between the vertices inside Ay, also there is no edge from
Aj to Ag. The edges from A; go only to A_;.

This means that A; U A_; is a component which is bipartite and it is disconnected from
Ap. Since it is assumed that the graph is connected, then Ay = ().



