

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 7

- Proposed Solution -

Friday, December 15, 2017

Solution of Problem 1

(Diffusion Map)

- a) A kernel function $K(\mathbf{x}_i, \mathbf{x}_i)$ of a diffusion map must follow the following properties:
 - Symmetry: $K(\mathbf{x}_i, \mathbf{x}_j) = K(\mathbf{x}_j, \mathbf{x}_i)$,
 - Non-negativity: $K(\mathbf{x}_i, \mathbf{x}_j) \geq 0$,
 - Locality: If $\|\mathbf{x}_j \mathbf{x}_i\|_2 \to \infty$ then $K(\mathbf{x}_i, \mathbf{x}_j) \to 0$. If $\|\mathbf{x}_j \mathbf{x}_i\|_2 \to 0$ then $K(\mathbf{x}_i, \mathbf{x}_j) \to 1$.
- **b)** $K_1(\mathbf{x}_i, \mathbf{x}_j) = ||\mathbf{x}_j \mathbf{x}_i||^2$: No, locality is violated.
 - $K_2(\mathbf{x}_i, \mathbf{x}_j) = 1 ||\mathbf{x}_j \mathbf{x}_i||_2$: No, non-negativity and locality are violated.
 - $K_3(\mathbf{x}_i, \mathbf{x}_j) = \cos(\frac{\pi}{2} ||\mathbf{x}_j \mathbf{x}_i||_2)$ for $||\mathbf{x}_j \mathbf{x}_i||_2 \le 1$, and zero elsewhere: : Yes, this could be a kernel function.
 - $K_4(\mathbf{x}_i, \mathbf{x}_j) = \max\{1 (\|\mathbf{x}_j\|_2^2 \mathbf{x}_j^T \mathbf{x}_i), 0\}$: No, symmetry is violated.

c)

$$\mathbf{W} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & K(\mathbf{x}_1, \mathbf{x}_2) & K(\mathbf{x}_1, \mathbf{x}_3) \\ K(\mathbf{x}_2, \mathbf{x}_1) & K(\mathbf{x}_2, \mathbf{x}_2) & K(\mathbf{x}_2, \mathbf{x}_3) \\ K(\mathbf{x}_3, \mathbf{x}_1) & K(\mathbf{x}_3, \mathbf{x}_2) & K(\mathbf{x}_3, \mathbf{x}_3) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{3} \\ 0 & \frac{1}{3} & 1 \end{bmatrix}.$$

d) We know that \mathbf{M} can be decomposed as $\mathbf{M} = \mathbf{\Phi} \mathbf{\Delta} \mathbf{\Psi}^T$, where $\mathbf{\Phi}$ and $\mathbf{\Psi}$ are bi-orthogonal (i.e., $\mathbf{\Phi}^T \mathbf{\Psi} = \mathbf{I}_3$). We observe that the provided expression follows the same form, sinne the columns corresponding to the left and right eigenvectors of \mathbf{M} are orthogonal. Nevertheless, these columns are not properly scaled since

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ 1 & 0 & -1 \end{bmatrix}^{1} \begin{bmatrix} 1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = 2\mathbf{I}_{3}$$

Therefore, by properly normalizing the provided relation we obtain $\mathbf{M} = \mathbf{\Phi} \mathbf{\Delta} \mathbf{\Psi}^{\mathrm{T}}$ as

$$\mathbf{M} = \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1\\ 0 & \sqrt{2} & 0\\ 1 & 0 & -1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} 2 \begin{bmatrix} 3 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1\\ 0 & \sqrt{2} & 0\\ 1 & 0 & -1 \end{bmatrix} \end{pmatrix}^{\mathrm{T}}$$
$$= \mathbf{\Phi} \mathbf{\Delta} \mathbf{\Psi}^{\mathrm{T}}$$

Therefore, since $\Delta = \text{diag}(\lambda_k)_{k=1,2,3}$, we have that $\lambda_1 = 6$, $\lambda_2 = 4$ and $\lambda_3 = 2$.

Solution of Problem 2

First of all, see that:

$$\begin{split} &\sum_{l=1}^{n} \frac{1}{\deg(l)} \Big(\mathbb{P}(X_{t} = l | X_{0} = i) - \mathbb{P}(X_{t} = l | X_{0} = j) \Big)^{2} \\ &= \sum_{l=1}^{n} \frac{1}{\deg(l)} \Bigg(\sum_{k=1}^{n} \lambda_{k}^{t} \phi_{k,i} \psi_{k,l} - \sum_{k=1}^{n} \lambda_{k}^{t} \phi_{k,j} \psi_{k,l} \Bigg)^{2} = \sum_{l=1}^{n} \frac{1}{\deg(l)} \Bigg(\sum_{k=1}^{n} \lambda_{k}^{t} (\phi_{k,i} - \phi_{k,j}) \psi_{k,l} \Bigg)^{2} \\ &= \sum_{l=1}^{n} \Bigg(\sum_{k=1}^{n} \lambda_{k}^{t} (\phi_{k,i} - \phi_{k,j}) \frac{\psi_{k,l}}{\sqrt{\deg(l)}} \Bigg)^{2} = \left\| \sum_{k=1}^{n} \lambda_{k}^{t} (\phi_{k,i} - \phi_{k,j}) \mathbf{D}^{-1/2} \psi_{k} \right\|^{2} \end{split}$$

Note that $\mathbf{D}^{-1/2}\Psi$ is equal to \mathbf{V} , the eigenvalue matrix in spectral decomposition of \mathbf{S} . Therefore $\mathbf{D}^{-1/2}\psi_k$'s are orthonormal, and we have:

$$\left\| \sum_{k=1}^{n} \lambda_{k}^{t} (\phi_{k,i} - \phi_{k,j}) \mathbf{D}^{-1/2} \boldsymbol{\psi}_{k} \right\|^{2} = \sum_{k=1}^{n} (\lambda_{k}^{t})^{2} (\phi_{k,i} - \phi_{k,j})^{2} = \sum_{k=1}^{n} (\lambda_{k}^{t} \phi_{k,i} - \lambda_{k}^{t} \phi_{k,j})^{2} = \| \boldsymbol{\phi}_{t}(v_{i}) - \boldsymbol{\phi}_{t}(v_{j}) \|^{2}.$$

Solution of Problem 3

a) Forward direction:

If the graph is disconnected, then the vertex set V can be partitioned into two sets A and B such that no edge exists between A and B. In the transition matrix \mathbf{M} , non-zero entries appear only on the entries inside $A \times A$ and $B \times B$. Let $\mathbf{M}_{C,D}$ is constructed as the submatrix of \mathbf{M} by choosing rows from the set C and columns from the set D. Then $\mathbf{M}_{A,A}$ and $\mathbf{M}_{B,B}$ are both transition matrices on their own. Then χ_A and χ_B are both eigenvectors of those matrices with eigenvalues equal to one, where $\chi_A = (\chi_A(i))_{1 \leq i \leq n}$, with $\chi_A(x) = 0$ if $x \notin A$ and $\chi_A(x) = 1$ if $x \in A$. Therefore there are at least two eigenvalues equal to one in this case.

Reverse direction:

Suppose that there is more than one eigenvalue equal to one.

However, it is known that $|\lambda_k| \leq 1$ for all eigenvalues of **M**.

Let $\mathbf{m} = (m_1, \dots, m_n)^T$ be the eigenvector corresponding to $\lambda_2 = 1$. If $|m_l| = \max_{1 \le j \le n} |m_j|$, we have:

$$|\lambda_2| \le \sum_{j=1}^n M_{lj} \frac{|m_j|}{|m_l|} \le \sum_{j=1}^n M_{lj} = 1.$$

The equality obtains if $\frac{|m_j|}{|m_l|} = 1$ for those j where $M_{lj} \neq 0$ and m_j 's have those same sign. We can assume that $m_l = 1$. Define the set A as:

$$A = \{k : m_k = 1\}.$$

Since the first eigenvector is $\mathbf{1}_n$, the second eigenvector should be different and hence $A \neq \{1, \ldots, n\}$ and $A^c \neq \emptyset$. For each $k \in A$, we have:

$$\sum_{j=1}^{n} M_{kj} m_j = 1.$$

Note that $\sum_{j=1}^{n} M_{kj} = 1$ and $m_j < 1$ for $j \in A^c$. Therefore to have the equality, again $m_j = 1$ whenever $M_{kj} \neq 0$. In other words, $M_{ij} = 0$ for $j \in A^c$ and $i \in A$. Since $M_{ij} = \frac{w_{ij}}{\deg(i)}$, $M_{ji} = 0$ for $j \in A^c$ and $i \in A$. In other words there is no edge between the nodes of A and A^c . Hence the graph is disconnected.

Similar argument can be used by looking at m_k , $k \in A^c$. Since $M_{ki} = 0$ for $i \in A$, then $\sum_{j \in A^c} M_{kj} m_j = m_k$. Taking a k maximum absolute value entry and applying the same argument, another set B can be constructed having $m_j = m_k$ for $j \in B$ (this time we do not have $m_k = 1$). The set B represents another connected component of the graph. The process can be continued by removing the previous connected components from the graph and analysing again the remaining graph.

b) Forward direction:

If the graph is bipartite, then the vertex set V can be partitioned into two sets A and B such that no edge exists inside A and inside B but only between them. In the transition matrix M, non-zero entries appear only on the entries inside $A \times B$ and $B \times A$. Without loss of generality assume that $A = \{1, \ldots, l\}$ and $B = \{l+1, \ldots, n\}$. Then:

$$\mathbf{M} \begin{bmatrix} \mathbf{1}_A \\ \mathbf{0}_B \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{A \times A} & \mathbf{M}_{A \times B} \\ \mathbf{M}_{B \times A} & \mathbf{0}_{B \times B} \end{bmatrix} \begin{bmatrix} \mathbf{1}_A \\ \mathbf{0}_B \end{bmatrix} = \begin{bmatrix} \mathbf{0}_A \\ \mathbf{1}_B \end{bmatrix}$$

$$\mathbf{M} egin{bmatrix} \mathbf{0}_A \ \mathbf{1}_B \end{bmatrix} = egin{bmatrix} \mathbf{0}_{A imes A} & \mathbf{M}_{A imes B} \ \mathbf{M}_{B imes A} & \mathbf{0}_{B imes B} \end{bmatrix} egin{bmatrix} \mathbf{0}_A \ \mathbf{1}_B \end{bmatrix} = egin{bmatrix} \mathbf{1}_A \ \mathbf{0}_B \end{bmatrix}$$

That implies:

$$\mathbf{M} egin{bmatrix} \mathbf{1}_A \ -\mathbf{1}_B \end{bmatrix} = egin{bmatrix} -\mathbf{1}_A \ \mathbf{1}_B \end{bmatrix}.$$

Therefore -1 is an eigenvalue.

Reverse direction:

Suppose that $\lambda_2 = -1$ is an eigenvalue. If $|m_l| = \max_{1 \le j \le n} |m_j|$, we have:

$$|\lambda| \le \sum_{j=1}^n M_{lj} \frac{|m_j|}{|m_l|} \le \sum_{j=1}^n M_{lj} = 1.$$

Since $\lambda = -1$, the equality obtains if $m_j = -m_l$ for those j where $M_{lj} \neq 0$. We can assume that $m_l = 1$. Define the sets A_{-1}, A_1, A_0 as:

$$A_{-1} = \{k : m_k = -1\}, A_1 = \{k : m_k = 1\}, A_0 = \{k : |m_k| \neq 1\}.$$

For each $k \in A_{-1}$, we have:

$$\sum_{j=1}^{n} M_{kj} m_j = 1.$$

This means that if $k \in A_{-1}$, then $m_j = 1$ for $M_{kj} \neq 0$. In other words, if $m_j \neq 1$ then $M_{kj} = 0$, which is:

$$M_{kj} = 0 \text{ for } k \in A_{-1}, j \in A_1^c.$$

In other words no edge exists between the vertices inside A_{-1} , also there is no edge from A_{-1} to A_0 . The edges from A_{-1} go only to A_1 .

Similarly for each $k \in A_1$, we have:

$$\sum_{j=1}^{n} M_{kj} m_j = -1.$$

This means that if $k \in A_1$, then $m_j = -1$ for $M_{kj} \neq 0$. In other words, if $m_j \neq -1$ then $M_{kj} = 0$, which is:

$$M_{kj} = 0 \text{ for } k \in A_1, j \in A_{-1}^c.$$

In other words no edge exists between the vertices inside A_1 , also there is no edge from A_1 to A_0 . The edges from A_1 go only to A_{-1} .

This means that $A_1 \cup A_{-1}$ is a component which is bipartite and it is disconnected from A_0 . Since it is assumed that the graph is connected, then $A_0 = \emptyset$.