Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 7
 - Proposed Solution -

Friday, December 15, 2017

Solution of Problem 1

(Diffusion Map)

a) A kernel function $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ of a diffusion map must follow the following properties:

- Symmetry: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=K\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$,
- Non-negativity: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 0$,
- Locality: If $\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|_{2} \rightarrow \infty$ then $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \rightarrow 0$. If $\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|_{2} \rightarrow 0$ then $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \rightarrow 1$.
b) - $K_{1}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|^{2}$: No, locality is violated.
- $K_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=1-\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|_{2}$: No, non-negativity and locality are violated.
- $K_{3}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\cos \left(\frac{\pi}{2}\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|_{2}\right)$ for $\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|_{2} \leq 1$, and zero elsewhere: : Yes, this could be a kernel function.
- $K_{4}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\max \left\{1-\left(\left\|\mathbf{x}_{j}\right\|_{2}^{2}-\mathbf{x}_{j}^{\mathrm{T}} \mathbf{x}_{i}\right), 0\right\}$: No, symmetry is violated.
c)

$$
\mathbf{W}=\left[\begin{array}{lll}
K\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & K\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right) \\
K\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) & K\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right) & K\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
K\left(\mathbf{x}_{3}, \mathbf{x}_{1}\right) & K\left(\mathbf{x}_{3}, \mathbf{x}_{2}\right) & K\left(\mathbf{x}_{3}, \mathbf{x}_{3}\right)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \frac{1}{3} \\
0 & \frac{1}{3} & 1
\end{array}\right] .
$$

d) We know that \mathbf{M} can be decomposed as $\mathbf{M}=\boldsymbol{\Phi} \boldsymbol{\Delta} \boldsymbol{\Psi}^{\mathrm{T}}$, where $\boldsymbol{\Phi}$ and $\boldsymbol{\Psi}$ are bi-orthogonal (i.e., $\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Psi}=\mathbf{I}_{3}$). We observe that the provided expression follows the same form, sicne the columns corresponding to the left and right eigenvectors of \mathbf{M} are orthogonal. Nevertheless, these columns are not properly scaled since

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
1 & 0 & -1
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
1 & 0 & -1
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=2 \mathbf{I}_{3}
$$

Therefore, by properly normalizing the provided relation we obtain $\mathbf{M}=\boldsymbol{\Phi} \boldsymbol{\Delta} \boldsymbol{\Psi}^{\mathrm{T}}$ as

$$
\begin{aligned}
\mathbf{M} & =\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
1 & 0 & -1
\end{array}\right]\right)\left(2\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
1 & 0 & -1
\end{array}\right]\right)^{\mathrm{T}} \\
& =\boldsymbol{\Phi} \boldsymbol{\Delta} \boldsymbol{\Psi}^{\mathrm{T}}
\end{aligned}
$$

Therefore, since $\boldsymbol{\Delta}=\operatorname{diag}\left(\lambda_{k}\right)_{k=1,2,3}$, we have that $\lambda_{1}=6, \lambda_{2}=4$ and $\lambda_{3}=2$.

Solution of Problem 2

First of all, see that:

$$
\begin{aligned}
& \sum_{l=1}^{n} \quad \frac{1}{\operatorname{deg}(l)}\left(\mathbb{P}\left(X_{t}=l \mid X_{0}=i\right)-\mathbb{P}\left(X_{t}=l \mid X_{0}=j\right)\right)^{2} \\
& \quad=\sum_{l=1}^{n} \frac{1}{\operatorname{deg}(l)}\left(\sum_{k=1}^{n} \lambda_{k}^{t} \phi_{k, i} \psi_{k, l}-\sum_{k=1}^{n} \lambda_{k}^{t} \phi_{k, j} \psi_{k, l}\right)^{2}=\sum_{l=1}^{n} \frac{1}{\operatorname{deg}(l)}\left(\sum_{k=1}^{n} \lambda_{k}^{t}\left(\phi_{k, i}-\phi_{k, j}\right) \psi_{k, l}\right)^{2} \\
& \quad=\sum_{l=1}^{n}\left(\sum_{k=1}^{n} \lambda_{k}^{t}\left(\phi_{k, i}-\phi_{k, j}\right) \frac{\psi_{k, l}}{\sqrt{\operatorname{deg}(l)}}\right)^{2}=\left\|\sum_{k=1}^{n} \lambda_{k}^{t}\left(\phi_{k, i}-\phi_{k, j}\right) \mathbf{D}^{-1 / 2} \boldsymbol{\psi}_{k}\right\|^{2}
\end{aligned}
$$

Note that $\mathbf{D}^{-1 / 2} \boldsymbol{\Psi}$ is equal to \mathbf{V}, the eigenvalue matrix in spectral decomposition of \mathbf{S}. Therefore $\mathbf{D}^{-1 / 2} \boldsymbol{\psi}_{k}$'s are orthonormal, and we have:

$$
\left\|\sum_{k=1}^{n} \lambda_{k}^{t}\left(\phi_{k, i}-\phi_{k, j}\right) \mathbf{D}^{-1 / 2} \boldsymbol{\psi}_{k}\right\|^{2}=\sum_{k=1}^{n}\left(\lambda_{k}^{t}\right)^{2}\left(\phi_{k, i}-\phi_{k, j}\right)^{2}=\sum_{k=1}^{n}\left(\lambda_{k}^{t} \phi_{k, i}-\lambda_{k}^{t} \phi_{k, j}\right)^{2}=\left\|\boldsymbol{\phi}_{t}\left(v_{i}\right)-\boldsymbol{\phi}_{t}\left(v_{j}\right)\right\|^{2} .
$$

Solution of Problem 3

a) Forward direction:

If the graph is disconnected, then the vertex set V can be partitioned into two sets A and B such that no edge exists between A and B. In the transition matrix \mathbf{M}, non-zero entries appear only on the entries inside $A \times A$ and $B \times B$. Let $\mathbf{M}_{C, D}$ is constructed as the submatrix of \mathbf{M} by choosing rows from the set C and columns from the set D. Then $\mathbf{M}_{A, A}$ and $\mathbf{M}_{B, B}$ are both transition matrices on their own. Then $\boldsymbol{\chi}_{A}$ and $\boldsymbol{\chi}_{B}$ are both eigenvectors of those matrices with eigenvalues equal to one, where $\chi_{A}=\left(\chi_{A}(i)\right)_{1 \leq i \leq n}$, with $\chi_{A}(x)=0$ if $x \notin A$ and $\chi_{A}(x)=1$ if $x \in A$. Therefore there are at least two eigenvalues equal to one in this case.

Reverse direction:

Suppose that there is more than one eigenvalue equal to one.
However, it is known that $\left|\lambda_{k}\right| \leq 1$ for all eigenvalues of \mathbf{M}.
Let $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)^{T}$ be the eigenvector corresponding to $\lambda_{2}=1$. If $\left|m_{l}\right|=$ $\max _{1 \leq j \leq n}\left|m_{j}\right|$, we have:

$$
\left|\lambda_{2}\right| \leq \sum_{j=1}^{n} M_{l j} \frac{\left|m_{j}\right|}{\left|m_{l}\right|} \leq \sum_{j=1}^{n} M_{l j}=1 .
$$

The equality obtains if $\frac{\left|m_{j}\right|}{\left|m_{l}\right|}=1$ for those j where $M_{l j} \neq 0$ and m_{j} 's have those same sign. We can assume that $m_{l}=1$. Define the the set A as:

$$
A=\left\{k: m_{k}=1\right\} .
$$

Since the first eigenvector is $\mathbf{1}_{n}$, the second eigenvector should be different and hence $A \neq\{1, \ldots, n\}$ and $A^{c} \neq \emptyset$. For each $k \in A$, we have:

$$
\sum_{j=1}^{n} M_{k j} m_{j}=1
$$

Note that $\sum_{j=1}^{n} M_{k j}=1$ and $m_{j}<1$ for $j \in A^{c}$. Therefore to have the equality, again $m_{j}=1$ whenever $M_{k j} \neq 0$. In other words, $M_{i j}=0$ for $j \in A^{c}$ and $i \in A$. Since $M_{i j}=\frac{w_{i j}}{\operatorname{deg}(i)}, M_{j i}=0$ for $j \in A^{c}$ and $i \in A$. In other words there is no edge between the nodes of A and A^{c}. Hence the graph is disconnected.
Similar argument can be used by looking at $m_{k}, k \in A^{c}$. Since $M_{k i}=0$ for $i \in A$, then $\sum_{j \in A^{c}} M_{k j} m_{j}=m_{k}$. Taking a k maximum absolute value entry and applying the same argument, another set B can be constructed having $m_{j}=m_{k}$ for $j \in B$ (this time we do not have $m_{k}=1$). The set B represents another connected component of the graph. The process can be continued by removing the previous connected components from the graph and analysing again the remaining graph.

b) Forward direction:

If the graph is bipartite, then the vertex set V can be partitioned into two sets A and B such that no edge exists inside A and inside B but only between them. In the transition matrix \mathbf{M}, non-zero entries appear only on the entries inside $A \times B$ and $B \times A$. Without loss of generality assume that $A=\{1, \ldots, l\}$ and $B=\{l+1, \ldots, n\}$. Then:

$$
\begin{aligned}
& \mathbf{M}\left[\begin{array}{l}
\mathbf{1}_{A} \\
\mathbf{0}_{B}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{0}_{A \times A} & \mathbf{M}_{A \times B} \\
\mathbf{M}_{B \times A} & \mathbf{0}_{B \times B}
\end{array}\right]\left[\begin{array}{l}
\mathbf{1}_{A} \\
\mathbf{0}_{B}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0}_{A} \\
\mathbf{1}_{B}
\end{array}\right] \\
& \mathbf{M}\left[\begin{array}{l}
\mathbf{0}_{A} \\
\mathbf{1}_{B}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{0}_{A \times A} & \mathbf{M}_{A \times B} \\
\mathbf{M}_{B \times A} & \mathbf{0}_{B \times B}
\end{array}\right]\left[\begin{array}{l}
\mathbf{0}_{A} \\
\mathbf{1}_{B}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{1}_{A} \\
\mathbf{0}_{B}
\end{array}\right]
\end{aligned}
$$

That implies:

$$
\mathbf{M}\left[\begin{array}{c}
\mathbf{1}_{A} \\
-\mathbf{1}_{B}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{1}_{A} \\
\mathbf{1}_{B}
\end{array}\right] .
$$

Therefore -1 is an eigenvalue.

Reverse direction:

Suppose that $\lambda_{2}=-1$ is an eigenvalue. If $\left|m_{l}\right|=\max _{1 \leq j \leq n}\left|m_{j}\right|$, we have:

$$
|\lambda| \leq \sum_{j=1}^{n} M_{l j} \frac{\left|m_{j}\right|}{\left|m_{l}\right|} \leq \sum_{j=1}^{n} M_{l j}=1
$$

Since $\lambda=-1$, the equality obtains if $m_{j}=-m_{l}$ for those j where $M_{l j} \neq 0$. We can assume that $m_{l}=1$. Define the the sets A_{-1}, A_{1}, A_{0} as:

$$
A_{-1}=\left\{k: m_{k}=-1\right\}, A_{1}=\left\{k: m_{k}=1\right\}, A_{0}=\left\{k:\left|m_{k}\right| \neq 1\right\} .
$$

For each $k \in A_{-1}$, we have:

$$
\sum_{j=1}^{n} M_{k j} m_{j}=1
$$

This means that if $k \in A_{-1}$, then $m_{j}=1$ for $M_{k j} \neq 0$. In other words, if $m_{j} \neq 1$ then $M_{k j}=0$, which is:

$$
M_{k j}=0 \text { for } k \in A_{-1}, j \in A_{1}^{c} .
$$

In other words no edge exists between the vertices inside A_{-1}, also there is no edge from A_{-1} to A_{0}. The edges from A_{-1} go only to A_{1}.
Similarly for each $k \in A_{1}$, we have:

$$
\sum_{j=1}^{n} M_{k j} m_{j}=-1
$$

This means that if $k \in A_{1}$, then $m_{j}=-1$ for $M_{k j} \neq 0$. In other words, if $m_{j} \neq-1$ then $M_{k j}=0$, which is:

$$
M_{k j}=0 \text { for } k \in A_{1}, j \in A_{-1}^{c} .
$$

In other words no edge exists between the vertices inside A_{1}, also there is no edge from A_{1} to A_{0}. The edges from A_{1} go only to A_{-1}.
This means that $A_{1} \cup A_{-1}$ is a component which is bipartite and it is disconnected from A_{0}. Since it is assumed that the graph is connected, then $A_{0}=\emptyset$.

