Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 8

- Proposed Solution -

Friday, December 22, 2017

Solution of Problem 1

Note that the discriminant rule is to allocate \mathbf{x} to the group 1 if $\left|\mathbf{a}^{T} \mathbf{x}-\mathbf{a}^{T} \overline{\mathbf{x}}_{\mathbf{1}}\right|<\left|\mathbf{a}^{T} \mathbf{x}-\mathbf{a}^{T} \overline{\mathbf{x}}_{\mathbf{2}}\right|$ with $\mathbf{a}=\mathbf{W}^{-1}\left(\overline{\mathbf{x}}_{\mathbf{1}}-\overline{\mathbf{x}}_{\mathbf{2}}\right)$. See that:

$$
\mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right)=\mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)+\mathbf{a}^{T}\left(\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right),
$$

and note that since \mathbf{W}^{-1} is nonnegative definite, we have:

$$
\mathbf{a}^{T}\left(\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right)=\left(\overline{\mathbf{x}}_{\mathbf{1}}-\overline{\mathbf{x}}_{\mathbf{2}}\right)^{T} \mathbf{W}^{-1}\left(\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right) \leq 0,
$$

hence $\mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right) \leq \mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)$. We have three cases:

- If $\mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right)>0$, then $\left|\mathbf{a}^{T} \mathbf{x}-\mathbf{a}^{T} \overline{\mathbf{x}}_{\mathbf{1}}\right|<\left|\mathbf{a}^{T} \mathbf{x}-\mathbf{a}^{T} \overline{\mathbf{x}}_{\mathbf{2}}\right|$, and the discriminant rule implies that \mathbf{x} is allocated to C_{1}.
- If $\mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)<0$, then $\left|\mathbf{a}^{T} \mathbf{x}-\mathbf{a}^{T} \overline{\mathbf{x}}_{\mathbf{1}}\right|>\left|\mathbf{a}^{T} \mathbf{x}-\mathbf{a}^{T} \overline{\mathbf{x}}_{\mathbf{2}}\right|$, and the discriminant rule implies that \mathbf{x} is allocated to C_{2}.
- If $\mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right)>0$ and $\mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right)<0$, the discriminant rule implies that \mathbf{x} is allocated to C_{1} if :

$$
\mathbf{a}^{T}\left(-\mathbf{x}+\overline{\mathbf{x}}_{\mathbf{1}}\right)<\mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right) \Longrightarrow \mathbf{a}^{T}\left(2 \mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right)>0
$$

Now just see that if $\mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right)>0$, then $\mathbf{a}^{T}\left(2 \mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right)>0$. And if $\mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)<0$, then $\mathbf{a}^{T}\left(2 \mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right)<0$.

Another solution:
First of all, the discriminant rule can be simplified as follows:

$$
\begin{aligned}
& \left|\mathbf{a}^{T} \mathbf{x}-\mathbf{a}^{T} \overline{\mathbf{x}}_{\mathbf{1}}\right|<\left|\mathbf{a}^{T} \mathbf{x}-\mathbf{a}^{T} \overline{\mathbf{x}}_{\mathbf{2}}\right| \Longrightarrow \\
& \left(\mathbf{a}^{T} \mathbf{x}-\mathbf{a}^{T} \overline{\mathbf{x}}_{\mathbf{1}}\right)^{2}<\left(\mathbf{a}^{T} \mathbf{x}-\mathbf{a}^{T} \overline{\mathbf{x}}_{\mathbf{2}}\right)^{2} \Longrightarrow \\
& \left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right)^{T} \mathbf{a} \mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right)<\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)^{T} \mathbf{a a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right) .
\end{aligned}
$$

Note that:

$$
\begin{aligned}
\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right)^{T} \mathbf{a} \mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right) & =\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}+\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right)^{T} \mathbf{a} \mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}+\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right) \\
& =\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)^{T} \mathbf{a} \mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)+\left(\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right)^{T} \mathbf{a a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right) \\
& +\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)^{T} \mathbf{a a}^{T}\left(\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right) \\
& =\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)^{T} \mathbf{a} \mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)+\left(\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right)^{T} \mathbf{a} \mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}\right) \\
& +\left(\overline{\mathbf{x}}_{\mathbf{2}}-\overline{\mathbf{x}}_{\mathbf{1}}\right)^{T} \mathbf{a} \mathbf{a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right) \\
& =\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)^{T} \mathbf{a} \mathbf{a a}^{T}\left(\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{2}}\right)-\left(\overline{\mathbf{x}}_{\mathbf{1}}-\overline{\mathbf{x}}_{\mathbf{2}}\right)^{T} \mathbf{a} \mathbf{a}^{T}\left(2 \mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}-\overline{\mathbf{x}}_{\mathbf{2}}\right)
\end{aligned}
$$

Using this equlity in the discriminant rule, we obtain the rule as:

$$
\left(\overline{\mathbf{x}}_{\mathbf{1}}-\overline{\mathbf{x}}_{\mathbf{2}}\right)^{T} \mathbf{a a}^{T}\left(2 \mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}-\overline{\mathbf{x}}_{\mathbf{2}}\right)>0 .
$$

However since \mathbf{W}^{-1} is nonnegative definite (see above), $\left(\overline{\mathbf{x}}_{\mathbf{1}}-\overline{\mathbf{x}}_{\mathbf{2}}\right)^{T} \mathbf{a}>0$ and therefore it suffices that:

$$
\mathbf{a}^{T}\left(2 \mathbf{x}-\overline{\mathbf{x}}_{\mathbf{1}}-\overline{\mathbf{x}}_{\mathbf{2}}\right)>0 .
$$

Solution of Problem 2

The ML discriminant rule for classification into two classes C_{1} and C_{2} allocates \mathbf{x} to C_{1} if:

$$
f_{1}(\mathbf{x})>f_{2}(\mathbf{x}),
$$

or equivalently if:

$$
\left(\mathrm{x}-\boldsymbol{\mu}_{1}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathrm{x}-\boldsymbol{\mu}_{1}\right)<\left(\mathrm{x}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathrm{x}-\boldsymbol{\mu}_{2}\right) .
$$

Note that:

$$
\begin{aligned}
\left(\mathbf{x}-\boldsymbol{\mu}_{1}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{1}\right) & =\left(\mathbf{x}-\boldsymbol{\mu}_{2}+\boldsymbol{\mu}_{2}-\boldsymbol{\mu}_{1}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{2}+\boldsymbol{\mu}_{2}-\boldsymbol{\mu}_{1}\right) \\
& =\left(\mathbf{x}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{2}\right)+\left(\boldsymbol{\mu}_{2}-\boldsymbol{\mu}_{1}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{1}\right) \\
& +\left(\mathbf{x}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{2}-\boldsymbol{\mu}_{1}\right) \\
& =\left(\mathbf{x}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{2}\right)+\left(\boldsymbol{\mu}_{2}-\boldsymbol{\mu}_{1}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{1}\right) \\
& +\left(\boldsymbol{\mu}_{2}-\boldsymbol{\mu}_{1}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{2}\right) \\
& =\left(\mathbf{x}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{2}\right)-\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(2 \mathbf{x}-\boldsymbol{\mu}_{1}--\boldsymbol{\mu}_{2}\right)
\end{aligned}
$$

Using this equlity in the discriminant rule, we have:

$$
\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(2 \mathrm{x}-\boldsymbol{\mu}_{1}--\boldsymbol{\mu}_{2}\right)>0
$$

which is the desired expression.

Solution of Problem 3

Note that $\mathbf{B}=\sum_{l=1}^{g} n_{l}\left(\overline{\mathbf{x}}_{\mathbf{1}}-\overline{\mathbf{x}}\right)\left(\overline{\mathbf{x}}_{\mathbf{1}}-\overline{\mathbf{x}}\right)^{T}$ and $\mathbf{W}=\sum_{l=1}^{g} \mathbf{X}_{l}^{T} \mathbf{E}_{l} \mathbf{X}_{l}$. But the crucial identity for this problem is the followin:

$$
\mathbf{S}=\mathbf{B}+\mathbf{W} .
$$

First of all, let (λ, \mathbf{v}) be eigenvalue-eigenvector pair for the matrix $\mathbf{W}^{-1} \mathbf{B}$. We have:

$$
\mathbf{W}^{-1} \mathbf{S}=\mathbf{W}^{-1} \mathbf{B}+\mathbf{I} \Longrightarrow \mathbf{W}^{-1} \mathbf{S} \mathbf{v}=\mathbf{W}^{-1} \mathbf{B v}+\mathbf{v}=(\lambda+1) \mathbf{v} .
$$

Therefore $(\lambda+1, \mathbf{v})$ is an eigenvalue-eigenvector pair for $\mathbf{W}^{-1} \mathbf{S}$. Moreover it can be seen that

$$
\mathbf{W}^{-1} \mathbf{S} \mathbf{v}=(\lambda+1) \mathbf{v} \Longrightarrow v=(\lambda+1) \mathbf{S}^{-1} \mathbf{W} \mathbf{v}
$$

which means that $\left(\frac{1}{\lambda+1}, \mathbf{v}\right)$ is an eigenvalue-eigenvector pair for $\mathbf{S}^{-1} \mathbf{W}$. Therefore the equivalence of three eigenvectors follow these discussions.

