Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 9
 - Proposed Solution -

Friday, January 12, 2018

Solution of Problem 1

a) Since the number of data points in each class is the same we have that

$$
\mathbf{E}_{1}=\mathbf{E}_{2}=\mathbf{I}_{3}-\frac{1}{3} \mathbf{1}_{3} \mathbf{1}_{3}^{\mathrm{T}}=\left[\begin{array}{ccc}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right]
$$

b)

$$
\overline{\mathbf{x}}=\frac{1}{6} \sum_{k=1}^{6} \mathbf{x}_{k}=\frac{1}{6}\left[\begin{array}{c}
-1+1+2+1+0-1 \\
1-2+0+1+2+1 \\
1+0-1-1-1-1
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
2 \\
3 \\
-3
\end{array}\right]
$$

c)

$$
\begin{gathered}
\overline{\mathbf{x}}_{1}=\frac{\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}}{3}=\frac{1}{3}\left[\begin{array}{c}
-1+1+2 \\
1-2+0 \\
1+0-1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
4 \\
-2 \\
0
\end{array}\right], \\
\overline{\mathbf{x}}_{2}=\frac{\mathbf{x}_{4}+\mathbf{x}_{5}+\mathbf{x}_{6}}{3}=\frac{1}{3}\left[\begin{array}{c}
1+0-1 \\
1+2+1 \\
-1-1-1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
0 \\
4 \\
-3
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
0 \\
8 \\
-6
\end{array}\right]
\end{gathered}
$$

d)

$$
\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}=\frac{1}{6}\left[\begin{array}{c}
2 \\
-5 \\
3
\end{array}\right], \quad \overline{\mathbf{x}}_{2}-\overline{\mathbf{x}}=\frac{1}{6}\left[\begin{array}{c}
-2 \\
5 \\
-3
\end{array}\right]
$$

Note that $\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}\right)=-\left(\overline{\mathbf{x}}_{2}-\overline{\mathbf{x}}\right)$, therefore we have that

$$
\begin{array}{r}
\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}\right)\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}\right)^{\mathrm{T}}=\left(\overline{\mathbf{x}}_{2}-\overline{\mathbf{x}}\right)\left(\overline{\mathbf{x}}_{2}-\overline{\mathbf{x}}\right)^{\mathrm{T}}=\frac{1}{6^{2}}\left[\begin{array}{ccc}
4 & -10 & 6 \\
-10 & 25 & -15 \\
6 & -15 & 9
\end{array}\right] \\
\mathbf{B}=3\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}\right)\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}\right)^{\mathrm{T}}+3\left(\overline{\mathbf{x}}_{2}-\overline{\mathbf{x}}\right)\left(\overline{\mathbf{x}}_{2}-\overline{\mathbf{x}}\right)^{\mathrm{T}}=\frac{1}{6}\left[\begin{array}{ccc}
4 & -10 & 6 \\
-10 & 25 & -15 \\
6 & -15 & 9
\end{array}\right]
\end{array}
$$

e)

$$
\begin{aligned}
\mathbf{W}^{-1} \mathbf{B} & =\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
3 & 2 \\
2 & -2
\end{array}\right]=\left[\begin{array}{ll}
5 & 0 \\
1 & 4
\end{array}\right] \\
\operatorname{det}\left|\mathbf{W}^{-1} \mathbf{B}-\lambda \mathbf{I}_{2}\right| & =\operatorname{det}\left|\left[\begin{array}{cc}
5-\lambda & 0 \\
1 & 4-\lambda
\end{array}\right]\right|=(5-\lambda)(4-\lambda)
\end{aligned}
$$

By setting this determinant to zero we obtain the eigenvalues of $\mathbf{W}^{-1} \mathbf{B}$ as the roots of $(5-\lambda)(4-\lambda)$, that is $\lambda_{1}=5$ and $\lambda_{2}=4$. Therefore, the optimal value of Fisher's discriminant is

$$
\max _{\mathbf{a} \in \mathbb{R}^{2}}\left\{\frac{\mathbf{a}^{\mathrm{T}} \mathbf{B a}}{\mathbf{a}^{\mathrm{T}} \mathbf{W} \mathbf{a}}\right\}=5 .
$$

Solution of Problem 2

a) If the n points are clustered into S_{1}, \ldots, S_{n}, then ML-cluster analysis writes as

$$
\max _{S_{1}, \ldots, S_{g}} \sum_{k=1}^{g} \sum_{i \in S_{k}} \log f_{k}\left(\mathbf{x}_{i}\right)=\max _{S_{1}, \ldots, S_{g}} \sum_{k=1}^{g} \sum_{i \in S_{k}} \text { const. }-\frac{1}{2} \log |\boldsymbol{\Sigma}|-\frac{1}{2}\left\{\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right)\right\} .
$$

Therefore having Σ and μ_{k}, the ML-cluster analysis is given by

$$
\min _{S_{1}, \ldots, S_{g}} \sum_{k=1}^{g} \sum_{i \in S_{k}} \log |\boldsymbol{\Sigma}|+\left\{\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right)\right\} .
$$

b) Given clustering of samples S_{1}, \ldots, S_{g}, the ML-estimation of $\boldsymbol{\Sigma}$ results from the minimization of above expression for fixed S_{1}, \ldots, S_{g}. Following similar argument from ML estimation of covariance matrix, μ_{k} are estimated by $\overline{\mathbf{x}}_{k}$. Using these values and differentiating with respect to $\boldsymbol{\Sigma}^{-1}$, similar to ML-estimation of covariance matrix, the ML-estimation of $\boldsymbol{\Sigma}$ is given by:

$$
n \hat{\boldsymbol{\Sigma}}=\sum_{k=1}^{g} \sum_{i \in S_{k}}\left\{\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)^{T}\right\} \Longrightarrow \hat{\boldsymbol{\Sigma}}=\frac{1}{n} \mathbf{W}
$$

where \mathbf{W} is within-group sum of squares.
c) Using the above estimation, ML-estimation can be written as

$$
\min _{S_{1}, \ldots, S_{g}} \sum_{k=1}^{g} \sum_{i \in S_{k}} \log \left|\frac{\mathbf{W}}{n}\right|+\left\{\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)^{T} \mathbf{W}^{-1} n\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)\right\} .
$$

But:
$\sum_{k=1}^{g} \sum_{i \in S_{k}}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)^{T} \mathbf{W}^{-1} n\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)=\sum_{k=1}^{g} \sum_{i \in S_{k}} \operatorname{tr}\left(\mathbf{W}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)^{T}\right)=\operatorname{tr}\left(\mathbf{W}^{-1} \mathbf{W}\right)=p$.
Therefore the ML-estimation can be written as:

$$
\min _{S_{1}, \ldots, S_{g}} \operatorname{det}(\mathbf{W}) .
$$

d) If $\boldsymbol{\Sigma}$ is known, ML-cluster analysis is written as:

$$
\min _{S_{1}, \ldots, S_{g}} \sum_{k=1}^{g} \sum_{i \in S_{k}} \log |\boldsymbol{\Sigma}|+\left\{\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)\right\} .
$$

Since Σ is known and irrelevant for the optimization, only the second term is important. Now see that from the argument used above:

$$
\sum_{k=1}^{g} \sum_{i \in S_{k}}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)=\operatorname{tr}\left(\mathbf{W} \boldsymbol{\Sigma}^{-1}\right) .
$$

Therefore the ML-analysis writes as:

$$
\min _{S_{1}, \ldots, S_{g}} \operatorname{tr}\left(\mathbf{W} \boldsymbol{\Sigma}^{-1}\right) .
$$

Solution of Problem 3

Each calculated distance $d(\mathbf{x}, \mathbf{y})$ is equivalent to 0.5 P . The updated centers in $\mathbf{b})$ each is equivalent to 0.5 P .
a) The center of cluster 1 is $\mathbf{c}_{1}=\mathbf{x}_{1}$, and the center of cluster 2 is $\mathbf{c}_{2}=\mathbf{x}_{3}$.

$$
\begin{aligned}
& d\left(\mathbf{c}_{1}, \mathbf{x}_{2}\right)=\sqrt{(7-7)^{2}+(3-0)^{2}}=3 \\
& d\left(\mathbf{c}_{2}, \mathbf{x}_{2}\right)=\sqrt{(9-7)^{2}+(1-3)^{2}}=\sqrt{8}=2.8284
\end{aligned}
$$

x_{2} belongs to cluster 2.

$$
\begin{aligned}
& d\left(\mathbf{c}_{1}, \mathbf{x}_{4}\right)=\sqrt{(9-7)^{2}+(5-0)^{2}}=\sqrt{29}=5.38 \\
& d\left(\mathbf{c}_{2}, \mathbf{x}_{4}\right)=\sqrt{(9-9)^{2}+(5-1)^{2}}=4
\end{aligned}
$$

x_{4} belongs to cluster 2 .

$$
\begin{aligned}
& d\left(\mathbf{c}_{1}, \mathbf{x}_{5}\right)=\sqrt{(3-7)^{2}+(7-0)^{2}}=\sqrt{65}=8.06 \\
& d\left(\mathbf{c}_{2}, \mathbf{x}_{5}\right)=\sqrt{(9-3)^{2}+(1-7)^{2}}=\sqrt{72}=8.485 .
\end{aligned}
$$

x_{5} belongs to cluster 1 .

$$
\begin{aligned}
& d\left(\mathbf{c}_{1}, \mathbf{x}_{6}\right)=\sqrt{(12-7)^{2}+(3-0)^{2}}=\sqrt{34}=5.83 \\
& d\left(\mathbf{c}_{2}, \mathbf{x}_{6}\right)=\sqrt{(12-9)^{2}+(3-1)^{2}}=\sqrt{13}=3.605 .
\end{aligned}
$$

x_{6} belongs to cluster 2.
b) The new center of cluster 1 is

$$
\left(\frac{7+3}{2}, \frac{0+7}{2}\right)=(5,3.5)
$$

The new center of cluster 2 is

$$
\left(\frac{7+9+9+12}{4}, \frac{3+1+5+3}{4}\right)=(9.25,3) \text {. }
$$

c) Using $d_{1}(\mathbf{x}, \mathbf{y})$:

$$
\begin{aligned}
& d\left(\mathbf{c}_{1}, \mathbf{x}_{2}\right)=|7-7|+|3-0|=3 \\
& d\left(\mathbf{c}_{2}, \mathbf{x}_{2}\right)=|9-7|+|1-3|=4
\end{aligned}
$$

x_{2} belongs to cluster 1 .

$$
\begin{aligned}
d\left(\mathbf{c}_{1}, \mathbf{x}_{4}\right) & =|9-7|+|5-0|=7 \\
d\left(\mathbf{c}_{2}, \mathbf{x}_{4}\right) & =|9-9|+|5-1|=4 .
\end{aligned}
$$

x_{4} belongs to cluster 2.

$$
\begin{aligned}
d\left(\mathbf{c}_{1}, \mathbf{x}_{5}\right) & =|3-7|+|7-0|=11 \\
d\left(\mathbf{c}_{2}, \mathbf{x}_{5}\right) & =|9-3|+|1-7|=12
\end{aligned}
$$

x_{5} belongs to cluster 1 .

$$
\begin{aligned}
& d\left(\mathbf{c}_{1}, \mathbf{x}_{6}\right)=|12-7|+|3-0|=8 \\
& d\left(\mathbf{c}_{2}, \mathbf{x}_{6}\right)=|12-9|+|3-1|=5
\end{aligned}
$$

\mathbf{x}_{6} belongs to cluster 2.
Using $d_{\infty}(\mathbf{x}, \mathbf{y})$:

$$
\begin{aligned}
& d\left(\mathbf{c}_{1}, \mathbf{x}_{2}\right)=\max (|7-7|,|3-0|) \\
& d\left(\mathbf{c}_{2}, \mathbf{x}_{2}\right)=\max (|9-7|,|1-3|)=\max (0,3)=3 \\
&
\end{aligned}
$$

x_{2} belongs to cluster 2.

$$
\begin{aligned}
& d\left(\mathbf{c}_{1}, \mathbf{x}_{4}\right)=\max (|9-7|,|5-0|) \\
& d\left(\mathbf{c}_{2}, \mathbf{x}_{4}\right)=\max (|9-9|,|5-1|)=\max (2,5)=5 \\
&
\end{aligned}
$$

x_{4} belongs to cluster 2 .

$$
\begin{aligned}
& d\left(\mathbf{c}_{1}, \mathbf{x}_{5}\right)=\max (|3-7|,|7-0|) \\
& d\left(\mathbf{c}_{2}, \mathbf{x}_{5}\right)=\max (|3-9|,|7-1|)=\max (4,7)=7 \\
&
\end{aligned}
$$

x_{5} belongs to cluster 2 .

$$
\begin{aligned}
& d\left(\mathbf{c}_{1}, \mathbf{x}_{6}\right)=\max (|12-7|,|3-0|)=\max (5,3)=5 \\
& d\left(\mathbf{c}_{2}, \mathbf{x}_{6}\right)=\max (|12-9|,|3-1|)=\max (3,2)=3 .
\end{aligned}
$$

x_{6} belongs to cluster 2.

