Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 10

- Proposed Solution -

Friday, January 12, 2018

Solution of Problem 1

a)

$$
\begin{aligned}
\sum_{i \in S_{k}}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)^{T} & =\sum_{i \in S_{k}}\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}-2 \mathbf{x}_{i} \overline{\mathbf{x}}_{k}^{T}+\overline{\mathbf{x}}_{k} \overline{\mathbf{x}}_{k}^{T}\right)=\sum_{i \in S_{k}} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-2 \sum_{i \in S_{k}} \mathbf{x}_{i} \overline{\mathbf{x}}_{k}^{T}+\sum_{i \in S_{k}} \overline{\mathbf{x}}_{k} \overline{\mathbf{x}}_{k}^{T} \\
& =\sum_{i \in S_{k}} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-2\left(\sum_{i \in S_{k}} \mathbf{x}_{i}\right) \overline{\mathbf{x}}_{k}^{T}+\left|S_{k}\right| \overline{\mathbf{x}}_{k} \overline{\mathbf{x}}_{k}^{T} \\
& =\sum_{i \in S_{k}} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-2\left|S_{k}\right| \overline{\mathbf{x}}_{k} \overline{\mathbf{x}}_{k}^{T}+\left|S_{k}\right| \overline{\mathbf{x}}_{k} \overline{\mathbf{x}}_{k}^{T} \\
& =\sum_{i \in S_{k}} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\left|S_{k}\right| \overline{\mathbf{x}}_{k} \overline{\mathbf{x}}_{k}^{T}=\sum_{i \in S_{k}} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\sum_{i \in S_{k}} \overline{\mathbf{x}}_{k} \overline{\mathbf{x}}_{k}^{T} \\
& =\sum_{i \in S_{k}} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\overline{\mathbf{x}}_{k} \overline{\mathbf{x}}_{k}^{T}
\end{aligned}
$$

b) Without loss of generality let us consider the case where, for some k, we have that $S_{k}=\{1, \ldots, m\}$, where $m=\left|S_{k}\right|$. Then, it follows

$$
\mathbf{X}_{k}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right]^{T}, \quad \text { and } \quad \mathbf{E}_{k}=\mathbf{I}_{m}-\frac{1}{m} \mathbf{1}_{m \times m}=\mathbf{I}_{m}-\frac{1}{m} \mathbf{1}_{m} \mathbf{1}_{m}^{T}
$$

Therefore, we have that

$$
\begin{aligned}
\mathbf{X}_{k}^{T} \mathbf{E}_{k} \mathbf{X}_{k} & =\left[\begin{array}{lll}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{m}
\end{array}\right]\left(\mathbf{I}_{m}-\frac{1}{m} \mathbf{1}_{m} \mathbf{1}_{m}^{T}\right)\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\vdots \\
\mathbf{x}_{m}^{T}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{m}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\vdots \\
\mathbf{x}_{m}^{T}
\end{array}\right]-\frac{1}{m}\left[\begin{array}{lll}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{m}
\end{array}\right] \mathbf{1}_{m} \mathbf{1}_{m}^{T}\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\vdots \\
\mathbf{x}_{m}^{T}
\end{array}\right] \\
& =\sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{m}\left(\sum_{i=1}^{m} \mathbf{x}_{i}\right)\left(\sum_{i=1}^{m} \mathbf{x}_{i}\right)^{T}=\sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{T}-\frac{1}{m}\left(m \overline{\mathbf{x}}_{k}\right)\left(m \overline{\mathbf{x}}_{k}\right)^{T} \\
& =\sum_{i=1}^{m}\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}-\overline{\mathbf{x}}_{k} \overline{\mathbf{x}}_{k}^{T}\right)=\sum_{i \in S_{k}}\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}-\overline{\mathbf{x}}_{k} \overline{\mathbf{x}}_{k}^{T}\right) \underset{(\mathbf{a})}{=} \sum_{i \in S_{k}}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)^{T} .
\end{aligned}
$$

Finally, this leads to

$$
\mathbf{W}=\sum_{k=1}^{g} \mathbf{X}_{k}^{T} \mathbf{E}_{k} \mathbf{X}_{k}=\sum_{k=1}^{g} \sum_{i \in S_{k}}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)^{T} .
$$

thus prooving the statement.

Solution of Problem 2

(Support Vector Machine with Only One Member per Class) Let the dataset consist of only two points, $\left(\mathbf{x}_{1}, y_{1}=+1\right)$ and $\left(\mathbf{x}_{2}, y_{2}=-1\right)$. See that

$$
\begin{array}{r}
\mathbf{a}^{T} \mathbf{x}_{1}+b \geq 1 \\
-\mathbf{a}^{T} \mathbf{x}_{2}-b \geq 1
\end{array}
$$

Adding those inequalities provide

$$
\mathbf{a}^{T}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \geq 2 \Longrightarrow\|\mathbf{a}\|_{2}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2} \geq 2
$$

Therefore $\|\mathbf{a}\|_{2}$, the objective function of the classifier achieves the minimum $\frac{2}{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}}$ for

$$
\mathbf{a}=\frac{2\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)}{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}
$$

On the other side, we have:

$$
\left.\begin{array}{l}
\mathbf{a}^{T} \mathbf{x}_{1}+b \geq 1 \Longrightarrow \frac{2\left(\mathbf{x}_{1}^{T} \mathbf{x}_{1}-\mathbf{x}_{2}^{T} \mathbf{x}_{1}\right)}{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}+b \geq 1 \\
\quad \Longrightarrow b
\end{array}\right) \frac{\left(\mathbf{x}_{2}^{T} \mathbf{x}_{2}-\mathbf{x}_{1}^{T} \mathbf{x}_{1}\right)}{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}} .
$$

and

$$
\begin{aligned}
-\mathbf{a}^{T} \mathbf{x}_{2}-b & \geq 1 \Longrightarrow-\frac{2\left(\mathbf{x}_{1}^{T} \mathbf{x}_{2}-\mathbf{x}_{2}^{T} \mathbf{x}_{2}\right)}{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}-b \geq 1 \\
\Longrightarrow b & \leq \frac{\left(\mathbf{x}_{2}^{T} \mathbf{x}_{2}-\mathbf{x}_{1}^{T} \mathbf{x}_{1}\right)}{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}} .
\end{aligned}
$$

which means that

$$
b=\frac{\mathbf{x}_{2}^{T} \mathbf{x}_{2}-\mathbf{x}_{1}^{T} \mathbf{x}_{1}}{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}
$$

The SVM classifier is given by:

$$
\frac{2\left(\mathbf{x}_{1}^{T} \mathbf{x}-\mathbf{x}_{2}^{T} \mathbf{x}\right)}{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}}+\frac{\mathbf{x}_{2}^{T} \mathbf{x}_{2}-\mathbf{x}_{1}^{T} \mathbf{x}_{1}}{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2}} \underset{y=-1}{\gtrless} 0 .
$$

However a bit of manipulation shows that:

$$
\left\|\mathbf{x}-\mathbf{x}_{2}\right\|_{2} \underset{y=-1}{\stackrel{y=1}{\gtrless}}\left\|\mathbf{x}-\mathbf{x}_{1}\right\|_{2} .
$$

Solution of Problem 3

(Support Vector Machine Margin) Let the dataset consist of points, $\left(\mathbf{x}_{i}, y_{i}=+1\right), i=1,2$ and $\left(\mathrm{x}_{3}, y_{3}=-1\right)$. Suppose that these points are linearly separable.
a) First of all, we have:

$$
\begin{aligned}
\mathbf{a}^{T} \mathbf{x}_{1}+b & \geq 1 \\
\mathbf{a}^{T} \mathbf{x}_{2}+b & \geq 1 \\
-\mathbf{a}^{T} \mathbf{x}_{3}-b & \geq 1
\end{aligned}
$$

From these inequalities we obtain:

$$
\begin{aligned}
& \mathbf{a}^{T}\left(\mathbf{x}_{1}-\mathbf{x}_{3}\right) \geq 2 \Longrightarrow\|\mathbf{a}\|_{2}\left\|\mathbf{x}_{1}-\mathbf{x}_{3}\right\|_{2} \geq 2 . \\
& \mathbf{a}^{T}\left(\mathbf{x}_{2}-\mathbf{x}_{3}\right) \geq 2 \Longrightarrow\|\mathbf{a}\|_{2}\left\|\mathbf{x}_{2}-\mathbf{x}_{3}\right\|_{2} \geq 2 .
\end{aligned}
$$

Therefore $\|\mathbf{a}\|_{2}$ should satisfy the all the previous inequalities and be strictly bigger that $\max \left(\frac{2}{\left\|\mathbf{x}_{1}-\mathbf{x}_{3}\right\|_{2}}, \frac{2}{\left\|\mathbf{x}_{2}-\mathbf{x}_{3}\right\|_{2}}\right)$. Without loss of generality, assume this is obtained by \mathbf{x}_{1}. Consider the following choice:

$$
\mathbf{a}=\frac{2\left(\mathbf{x}_{1}-\mathbf{x}_{3}\right)}{\left\|\mathbf{x}_{1}-\mathbf{x}_{3}\right\|_{2}^{2}}
$$

Although this achieves the minimum possible value of those inequalities, it might lead to a classifier that does not correctly classify the training points or violate the constraint above. From this a, we can find the corresponding b as follows and then check to see if this choice can correctly classify the training data. We have:

$$
\begin{aligned}
& \mathbf{a}^{T} \mathbf{x}_{1}+b \geq 1 \Longrightarrow \frac{2\left(\mathbf{x}_{1}^{T} \mathbf{x}_{1}-\mathbf{x}_{3}^{T} \mathbf{x}_{1}\right)}{\left\|\mathbf{x}_{1}-\mathbf{x}_{3}\right\|_{2}^{2}}+b \geq 1 \\
& \quad \Longrightarrow b
\end{aligned}
$$

and

$$
\begin{aligned}
-\mathbf{a}^{T} \mathbf{x}_{3}+b & \geq 1 \Longrightarrow-\frac{2\left(\mathbf{x}_{1}^{T} \mathbf{x}_{3}-\mathbf{x}_{3}^{T} \mathbf{x}_{3}\right.}{\left\|\mathbf{x}_{1}-\mathbf{x}_{3}\right\|_{2}^{2}}-b \geq 1 \\
\Longrightarrow b & \leq \frac{\left.\mathbf{x}_{3}^{T} \mathbf{x}_{3}-\mathbf{x}_{1}^{T} \mathbf{x}_{1}\right)}{\left\|\mathbf{x}_{1}-\mathbf{x}_{3}\right\|_{2}^{2}}
\end{aligned}
$$

Therefore b is given by:

$$
b=\frac{\mathbf{x}_{3}^{T} \mathbf{x}_{3}-\mathbf{x}_{1}^{T} \mathbf{x}_{1}}{\left\|\mathbf{x}_{1}-\mathbf{x}_{3}\right\|_{2}^{2}}
$$

Since b is obtained to satisfy two of the constraints, we need only to check the other one:

$$
\mathbf{a}^{T} \mathbf{x}_{2}+b \geq 1
$$

This is equal to

$$
\left\|\mathrm{x}_{2}-\mathrm{x}_{3}\right\|_{2} \geq\left\|\mathrm{x}_{1}-\mathrm{x}_{3}\right\|_{2}+\left\|\mathrm{x}_{1}-\mathrm{x}_{2}\right\|_{2}
$$

But this is true for collinear points hence this is the correct choice and the margin is given by the distance of \mathbf{x}_{1} and \mathbf{x}_{3}.
b) If the points are not collinear, the last inequality above can never be satisfied due to triangle inequality.

