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Problem 1. (13 points)
Maximum Likelihood Estimator:

a)

f(x|θ) = d
dθF (x|θ) = 2x

θ(1 + x2)1/θ+1

b)
`i(θ) = ln f(xi|θ) = ln 2xi − ln θ − (1

θ
+ 1) ln(1 + x2

i )

`(θ) =
n∑
i=1

li(θ) = −n ln +θ
n∑
i=1

ln 2xi − (1
θ

+ 1) ln(1 + x2
i )

c)
d
dθ ln f(x|θ) = −1

θ
+ 1
θ2 ln(1 + x2)

θ̂ satisfies ∑n
i=1(−1

θ
+ 1

θ2 ln(1 + x2
i ) = 0 this results in θ̂ = 1

n

∑n
i=1 ln(1 + x2

i )

d)

E
d
dθ ln f(x|θ) = E(−1

θ
+ 1
θ2 ln(1 + x2)) = 0 E ln(1 + x2) = θ

Eθ̂ = E
1
n

n∑
i=1

ln(1 + x2
i )

= 1
n

n∑
i=1

E ln(1 + x2
i )

= 1
n
nθ = θ





Problem 2. (12 points)
Principal Component Analysis:

a) Let A be a symmetric, n× n, matrix. Show that there exists a real, positive t, large
enough such that A + tI is positive definite. What is the minimum value of t? (5P)
Since A is symmetric, A + tI is also symmetric. For any eigenvalue λ of A, λ+ t is an
eigenvalue of A + tI so if t > −mini λi then A + tI has all (real) eigenvalues greater
than 0, thus is positive definite.

Now assume that A is given by:

A =

2
2
0

(2 2 0
)

+

0
0
1

(0 0 1
)

+

 1
−1
0

(1 −1 0
)

+

1
1
0

(1 1 0
)

b) What is the rank of A? (1P) 3

c) Calculate the spectral decomposition VΛVT of A by determining the matrices V and
Λ. (6P)

A =

6 4 0
4 6 0
0 0 1


∣∣∣∣∣∣∣
6− λ 4 0

4 6− λ 0
0 0 1− λ

∣∣∣∣∣∣∣ = (1−λ)[(6−λ)(6−λ)−16] = (1−λ)(λ2−12λ−20) = (1−λ)(λ−2)(λ−10) = 0 .

This results in λ1 = 1, λ2 = 2, λ3 = 10.
From the above construction of A and using Av = λv we get that the corresponding

eigenvectors are v1 =

0
0
1

 , v2 =

 1
−1
0

 v3 =

1
1
0

 . After normalization of these vectors

and combining to make V and Λ we get

V =

0 1/
√

2 1/
√

2
0 −1/

√
2 1/

√
2

1 0 0


and

Λ =

1 0 0
0 2 0
0 0 10


d) Determine the best projection matrix Q to transform the three-dimensional samples to

two-dimensions. (2P)
The best projection matrix Q is determined by the first k dominant eigenvectors vi
as Q∑k

i=1 vivT
i , where k is the dimension of the image. For a transformation of a

three-dimensional sample to a two-dimensional data (k=2), we obtain

Q = 1√
2

1
1
0

 1√
2
(
1 1 0

)
+ 1√

2

 1
−1
0

 1√
2
(
1 −1 0

)
=

1 0 0
0 1 0
0 0 0

 .



e) Determine the residuum 1
n−1 max

Q

∑n
i=1 ||Qxi −Qx̄n||2 for the above choice of Q. (2P)

The residuum 1
n−1 max

Q

∑n
i=1 ‖Qxi −Qx̄n‖2 is equal to the sum ∑k

i=1 λ(S) of dominant
eigenvalues, that is equal to 10/3 + 2/3 = 12/3 = 4.







Problem 3. (14 points)
Diffusion Map, (12P):

a) Since most of the euclidean distances are greater or equal than 0.8, most of the values in
W are equal to zero. Then, we only need to calculate e−5·(0.2)2 = 0.82, e−5·(0.3)2 = 0.64,
e−5·(0.4)2 = 0.45, thus

W =



1 0.82 0 · · · · · · · · · · · · 0
0.82 1 0.45 0 ...

0 0.45 1 0.82 . . .
... 0 0.82 1 0.64 . . . ...

. . . 0.64 1 0.64 0 0
. . . 0.64 1 0.64 0

... 0 0.64 1 0.45
0 · · · · · · 0 0.45 1


b) First we calculate deg(1) = 1 + 0.82 = 1.82 and deg(2) = 1 + 0.82 + 0.45 = 2.27. Then

we get,

M[1, :] = 1
1.82[1, 0.82, 0, . . . , 0] = [0.55, 0.45, 0, . . . , 0]

M[2, :] = 1
2.27[0.82, 1, 0.45, 0, . . . , 0] = [0.36, 0.44, 0.2, 0, . . . , 0]

c) For t = 0 and d = 2 the diffusion map expression simplifies to

φ
(d)
t (xi) =


λt2φ2,i

...
λtd+1φd+1,i

 =


φ2,i
...

φd+1,i

 =
[
φ2,i
φ3,i

]
, i = 1, . . . , 8 .

Therefore we get the 2-D diffusion maps[
φ

(d)
t (x1) · · · φ

(d)
t (x8)

]
= 1

10

[
3 3 2 1 −1 −2 −3 −4
3 2 −2 −3 −3 −1 2 4

]
with their corresponding 2D difussion map

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

d) When t→∞ all points are mapped to the zero vector.





Problem 4. (15 points)
Discriminant Analysis, (13P):

a) For two classes, the discriminant rule is

aT (x− 1
2(x1 + x2)) ≷ 0 .

Therefore, the separating hyperplane is given by

aT (x− 1
2(x1 + x2)) = aTx− 1

2aT (x1 + x2) = 0 .

Since x1 = 1
3(x1 + x2 + x3) = [−2

3 ,
2
3 ]T and x2 = x4 = [−1, 1]T , we have that

x1 + x2 = 1
3

[
1
−1

]
.

This leads to the following separating hyperplane

aTx− 1
2

1√
2

1
3[−11]

[
1
−1

]
= aTx− (− 1

3
√

2
) = 0 ,

thus b = − 1
3
√

2 . Finally, the obtained hyperplane is orthogonal to a and is shifted by
− 1

3
√

2 towards the direction of a, then the following drawing is obtained

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Class 1
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Figure 1: Separating Hyperplane

b) By definition yi = aTxi, yielding

y1 = 1√
2

[−1, 1]
[
−1
1

]
= 2√

2

y2 = 1√
2

[−1, 1]
[
−1
0

]
= 1√

2

y3 = 1√
2

[−1, 1]
[
0
1

]
= 1√

2

y4 = 1√
2

[−1, 1]
[

1
−1

]
= − 2√

2
.



Then the general discriminant average is y = 1
4(y1+y2+y3+y4) = 1

4
√

2(2+1+1−2) = 1
2
√

2 .
In a simillar manner the between group averages are

y1 = 1
3(y1 + y2 + y3) = 4

3
√

2
, and y2 = y4 = − 2√

2
.

Lets denote the sum of of squares between groups as γB ∈ R. By definition we get

γB =
2∑
l=1

nl(yl − y)2 = 3( 4
3
√

2
− 1

2
√

2
)2 + 1(− 2√

2
− 1

2
√

2
)2 = 25

6 .

Another method to reach this solution would be to calculate

B =
g∑
l=1

nl(xl − x)(xl − x)T = · · · = 25
12

[
1 −1
−1 1

]

and then it follows
γB = aTBa = 25

6 .

c) Lets denote the sum of of squares within groups as γW ∈ R. By definition we get

γW =
2∑
l=1

∑
j∈Cl

(yj − yl)2 = (y1 − y1)2 + (y2 − y1)2 + (y3 − y1)2 + (y4 − y2)2

= ( 2√
2
− 4

3
√

2
)2 + ( 1√

2
− 4

3
√

2
)2 + ( 1√

2
− 4

3
√

2
)2 + (− 2√

2
+ 2√

2
)2 = 1

3 .

Another method to reach this solution would be to calculate

W =
g∑
l=1

XT
l ElXl = · · · = 1

3

[
2 1
1 2

]

and then it follows
γW = aTBa = 1

3 .

d) It is clear for Figure 1 that, for any ε > 0, a noise vector η = a brings x̃4 closer to
crossing the margin than any other η. Therefore, the minimum ε that brings x̃4 to the
margin is

aT x̃4 − b = 0
aTx4 + εaTη − b = 0
aTx4 + εaTa − b = 0

y4 + ε− b = 0⇒ ε = −(y4 − b) .

By replacing the values of y4 and b we obtain

ε = −(y4 − b) = −(− 2√
2

+ 1
2
√

2
) = 3

2
√

2
.

Therefore, ε should be at least ε > 3
2
√

2 for x̃4 to be allocated to C1.







Problem 5. (15 points)
Support Vector Machines: A training dataset is composed of six vectors xi in two-
dimensional space, i = 1, . . . , 6, belonging to two classes. The class membership is indicated
by the labels yi ∈ {−1,+1}. A kernel-based support vector machine is used to find the
maximum-margin hyperplane by solving the following dual problem:

max
λλλ

6∑
i=1

λi −
1
2

6∑
i=1

6∑
j=1

yiyjλiλjK(xi,xj)

s.t. 0 ≤ λi ≤ 2 and
6∑
i=1

λiyi = 0.

The kernel function is given by:

K(xi,xj) = exp(−γ‖xi,xj‖2).

The value of γ is chosen as 0.1.

The dataset and the outputs of the optimization problem are given in the following table.

Data Label Solution Data Label Solution

x1 =
(

1
1

)
y1 = −1 λ?1 = 2 x4 =

(
−1
0

)
y4 = 1 λ?4 = 2

x2 =
(
−2
−1

)
y2 = −1 λ?2 = 0.74 x5 =

(
−2
1

)
y5 = 1 λ?5 = 0.5

x3 =
(
−1
−1

)
y3 = −1 λ?3 = 1.76 x6 =

(
1
2

)
y6 = 1 λ?6 = 2

a) The support vectors are all vectors x1,x2, . . . ,x5,x6.

b) First of all, we have:

a? =
6∑
i=1

λiyiφ(xi) = −2φ(x1)− 0.7φ(x2)− 1.8φ(x3) + 2φ(x4) + 0.5φ(x5) + 2φ(x6).

b? can be found only for those support vectors with λ 6= C = 2.

b? = y3 −
6∑
i=1

λiyiK(xi,x1)

= −1 + 2K(x1,x3) + 0.74K(x2,x3) + 1.76K(x3,x3)− 2K(x4,x3)− 0.5K(x5,x3)− 2K(x6,x3)
= −1 + 2× 0.008 + 0.74× 0.549 + 1.76× 1− 2× 0.549− 0.5× 0.05− 2× 0 ≈ 0.059.

The exact value is b? ≈ 0.057928. One can use similarly x2 and x5. Hence the classifier
is given by

6∑
i=1

λiyiK(xi,x) + 0.059 ≷ 0.

(6P)



c) If γ is very large using the approximation we have

max
λλλ

6∑
i=1

λi −
1
2

6∑
i=1

yiyiλ
2
i = −

6∑
i=1

1
2(λi − 1)2

s.t. 0 ≤ λi ≤ 2 and
6∑
i=1

λiyi = 0.

The maximum in this case will be zero and is attained with λi = 1; note that this choice
satisfies all the constraints since half of the dataset is labeled with yi = 1 and the other
half with yi = −1 and therefore

6∑
i=1

λiyi =
6∑
i=1

yi = 0

Therefore the support vector machine classifier is given by:

a? =
6∑
i=1

yiφ(xi) and b? = 0.

Hence the classifier is given by

6∑
i=1

yiK(xi,x) ≷ 0.

However the classifier gives the output zero for each vector outside the dataset and
correctly classifies the vectors inside the dataset. The support vectors include all vectors
in the dataset. (3P)







Problem 6. (13 points)
Kernels for SVM:

a) (6P) See the answers below:

a) K(xi,xj) = 1 for all xi,xj ∈ Rp: this is a valid kernel. The feature map is given
by φ(x) = 1.

b) K(xi,xj) = max
k∈{1,...,p}

(xi(k)−xj(k)) for xi = (xi(1), . . . , xi(p))T and xj = (xj(1), . . . , xj(p))T :

This is not a valid Kernel since the kernel should be symmetric:

K(x1,x2) = φ(x1)Tφ(x2) = φ(x2)Tφ(x1) = K(x2,x1).

However this function is not symmetric.
c) K(xi,xj) = |‖xi‖2 − ‖xj‖2| for all xi,xj ∈ Rp:

This is not a valid Kernel; If the kernel K : Rp × Rp → R is a valid kernel, there
exists a feature function φ(.) such that

K(xi,xj)) = 〈φ(xi), φ(xj)〉.

But K(x,x) = 0 for every x ∈ Rp. Therefore :

∀x := 〈φ(x), φ(x)〉 = 0 =⇒ φ(x) = 0.

This implies that K(x1,x2) = 0 for every pair of vectors x1,x2 which is a contra-
diction. One can also construct an easy example where the following matrix is not
non-negative definite:

K =


K(x1,x1) K(x1,x2) . . . K(x1,xn)
K(x2,x1) K(x2,x2) . . . K(x2,xn)

... ... . . . ...
K(xn,x1) K(xn,x2) . . . K(xn,xn)

 .

b) (6P) If the kernel is given byK(x,y) = 4(xTy)2 + 3(xTy) + 1 for x,y ∈ Rp, we have:

K(x,y) = 4(xTy)2 + 3(xTy) + 1 = 4(
p∑
i=1

xiyi)2 + 3
p∑
i=1

xiyi + 1

=
p∑
i=1

(
√

2xi)2(
√

2yi)2 +
∑

1≤i<j≤p
(2
√

2xixj)(2
√

2yiyj) +
p∑
i=1

(
√

3xi)(
√

3yi) + 1.

The feature mapping function φ(x) can be written as:

φ(x) = (2x2
1, . . . , 2x2

p, 2
√

2x1x2, 2
√

2x1x3, . . . , 2
√

2xp−1xp,
√

3x1, . . . ,
√

3xp, 1).

The dimension is given by p+
(
p
2

)
+ p+ 1 = (p+1)(p+2)

2





Problem 7. (12 points)

Clustering:
Part I:

Each calculated distance d(x,y) is equivalent to 0.5P. The centers update each 2P.

a) The center of cluster 1 is c1 = x1, and the center of cluster 2 is c2 = x5.

d(c1,x2) =
√

(3− 1)2 + (5− 4)2 =
√

5 = 2.23

d(c2,x2) =
√

(1 + 2)2 + (4 + 2)2 =
√

45 = 6.7

x2 belongs to cluster 1.

d(c1,x3) =
√

(3)2 + (5)2 =
√

34 = 5.83

d(c2,x3) =
√

(2)2 + (2)2 =
√

8 = 2.82.

x3 belongs to cluster 2.

d(c1,x4) =
√

(3− 1)2 + (5 + 1)2 =
√

40 = 6.32

d(c2,x4) =
√

(1 + 2)2 + (−1 + 2)2 =
√

10 = 3.16.

x4 belongs to cluster 2.

d(c1,x6) =
√

(3 + 1)2 + (5 + 4)2 =
√

97 = 9.85

d(c2,x6) =
√

(−2 + 1)2 + (−2 + 4)2 =
√

5 = 2.24.

x6 belongs to cluster 2.

b) The new center of cluster 1 is (
3+1

2 , 5+4
2

)
= (2, 4.5)

The new center of cluster 2 is(
0+1−2−1

4 , 0−1−2−4
4

)
= (−0.5,−1.75).

Part II:

Iteration 1 (2P)
cluster C1={P1}
cluster C2={P2,P5}
cluster C3={P3}
cluster C4={P4}



Iteration 2 (2P)

d(C1,C2) = 1
2(0.4 + 0.9) = 0.65

d(C3,C2) = 1
2(0.5 + 0.2) = 0.35

d(C4,C2) = 1
2(0.2 + 0.7) = 0.45

d(C1,C4) = 0.3

cluster C1={P1,P4}
cluster C2={P2,P5}
cluster C3={P3}

Iteration 3 (2P)

d(C1,C2) = 1
4(0.9 + 0.4 + 0.2 + 0.7) = 0.55

d(C2,C3) = 1
2(0.8 + 0.6) = 0.7

d(C1,C3) = 1
2(0.5 + 0.2) = 0.35

cluster C2 = {P2,P3,P5}
cluster C1 = {P1,P4}







Problem 8. (6 points)

Regression:

a) (4P)

hν(x) = 1
1 + e0.05−0.08×10 (2P)

= 0.6792
P(y = 0 | x, ν) = 1− hν(x) (2P)

= 1− 0.6792
= 0.3208

b) (2P)

hν(x) = log10(1 + e−0.05+0.08×10) (1P)
P(y = 0 | x, ν) = 1− hν(x) (1P)

= 1− log10(1 + e−0.05+0.08×10)
= 0.5063
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