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Solution of Problem 1

a) The Entropy of distribution p can be calculated as

1 1 1 1 1
H(p) = —Zpik)gpz’ = 3~ ZIOgZ — Zlogf = 1.5 bits.
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Similarly, the Entropy of distribution q,

1 1 1 1 1 1

For Kullbach-Leibler Divergence, we get

1.3 1. 3 1. 3
D(pllq) = szlog— 5log 5 + S log L+ - log T = 0.0849
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and
1.2 1. 4 1. 4
1 — Zlog 2 4+ ~log = + = log — = 0.081
D(qllp) = Zqog glog 2+ zlog o+ log - 8170

b) Consider two distributions p and q on a binary alphabet with probability mass function
(p,1 —p) and (g, 1 — q) respectively.

The relative entropies can be written as

i p l1—p
D(pllq)ZZpilogE=p10g5+(1—p)10g1_q (1)
and
4 q l1—gq
D(q|lp) =) qilog— =qlog=+ (1 —q)log 2
(allp) = Sailog ) = log | + (1~ ) log y— 2

Equating (1) and (2), we write

D(plla) = D(d|lp)

1_
1 =p10g13+(1—p)10g
D q 1-

q 1—
log = + (1 —q)1
qogp+( q)log -—

(p—l—q)log]z:(l—p—l—l—q)logl_




We can clearly see that, the equality holds when p =1 —q.

Solution of Problem 2

a)

b)

The minimum probability of error predictor when there is no information is X =1, the
most probable value of X. In this case, the probability of error P, = 1 — p;. Hence if
we fix P., we fix p;.

In order to obtain an upper bound on the entropy for a given P,, we maximize the
entropy of X for a given P.. The entropy can be written as

H(p) = —pilogps — > p;logp;

i=2
, Di Pi
=N 1ng1 - Zpei 10g 7Pe
= Fe Fe
o, Di Di
= —pilogps — > P.—log = — P.log P.
- P T F
b2 P3 Pm
:H(Pe)+PeH(F7?7 ....... ,F)
< H(P,) + P.log(m — 1),
since the maximum of H (%i, %’Z, ....... , ’;;:) is attained by an uniform distribution. There-

fore, any X that can predicted with a probability error P, must satisfy

H(X) < H(P.) + P.log(m — 1).

The above inequality is the unconditional form of Fano’s inequality. Thus, an explicit
lower bound for P, can be written as

H(X) —log2

P.>——
— log(m —1)

From the above exercise it is clear that the maximum of entropy H(X) or H(p) is
attained when p; = 1 — P. and ps, p3, .....ps, corresponds to a uniform distribution. That
IS po =p3.ec. =Py = %. Hence the probability vector p for which Fano’s inequality is
sharp can be written as

I P

=(1-P,, e )
= m—1 m — 1)
This can be easily verified by calculating entropy with probability vector p = (1 —
P,, mpjl, ....... mP_el), we get
P P,
H(p) = —p11 — — =
(p) Prlogpy Zz:;m—l R
P

= —(1-P)log(l—P.)—P.1
(1= P.)log(L = P.) = P.log —*

=—(1—-P.)log(l — P,) — P.log P. + P.log(m — 1)
= H(P.) + P.log(m — 1),

the equality holds.



Solution of Problem 3

a) From data processing inequality, we can write

I(X1; X3) < 1(X1; Xo)
= H(Xs) — H(X2|X)
< H(X3) (Since H(X3|X;) > 0)

<logk (maximum entropy of an uniform distribution)

(3)

Thus,the dependence between X; and X3 is limited by the size of the bottleneck. That
is 1(X1; X3) <logk.

b) For k =1, I(X;; X3) <logl = 0 and since 1(X3; X3) > 0, we get I(X;y; X3) = 0. So,
for k =1, X; and X3 are independent.

Solution of Problem 4
Define for t > 0

f(t) =Int —t+1. (4)
Taking the first derivative and equating to zero, we get
FiH)=7-1=0 = t=1 (5)
we get a maximal point, since second derivative f”(t) = —% < 0 for V¢ > 0. Also
it 7(2) = o0 = Jim (1) )

implies the above attained point is a global maximal point. Thus,
V>0, f(t) < f(1)=Inl—1+1=0. (7)

For t =0,
In0<0—-1— —oc0 < —1.

Consequently, we can write

Int <t—1, Vt>0. (Hence proved) (8)



