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Solution of Problem 1

a) The Entropy of distribution p can be calculated as

H(p) = −
∑

i

pi log pi = −1
2 log 1

2 −
1
4 log 1

4 −
1
4 log 1

4 = 1.5 bits.

Similarly, the Entropy of distribution q,

H(q) = −
∑

i

qi log pi = −1
3 log 1

3 −
1
3 log 1

3 −
1
3 log 1

3 = 1.5849 bits.

For Kullbach-Leibler Divergence, we get

D(p||q) =
∑

i

pi log pi

qi

= 1
2 log 3

2 + 1
4 log 3

4 + 1
4 log 3

4 = 0.0849

and

D(q||p) =
∑

i

qi log qi

pi

= 1
3 log 2

3 + 1
3 log 4

3 + 1
3 log 4

3 = 0.08170

b) Consider two distributions p and q on a binary alphabet with probability mass function
(p, 1− p) and (q, 1− q) respectively.
The relative entropies can be written as

D(p||q) =
∑

i

pi log pi

qi

= p log p

q
+ (1− p) log 1− p

1− q
(1)

and

D(q||p) =
∑

i

qi log qi

pi

= q log q

p
+ (1− q) log 1− q

1− p
(2)

Equating (1) and (2), we write

D(p||q) = D(q||p)

q log q

p
+ (1− q) log 1− q

1− p
= p log p

q
+ (1− p) log 1− p

1− q

(p + q) log q

p
= (1− p + 1− q) log 1− p

1− q



We can clearly see that, the equality holds when p = 1− q.

Solution of Problem 2

a) The minimum probability of error predictor when there is no information is X̂ = 1, the
most probable value of X. In this case, the probability of error Pe = 1− p1. Hence if
we fix Pe, we fix p1.
In order to obtain an upper bound on the entropy for a given Pe, we maximize the
entropy of X for a given Pe. The entropy can be written as

H(p) = −p1 log p1 −
m∑

i=2
pi log pi

= −p1 log p1 −
m∑

i=2
Pe

pi

Pe

log pi

Pe

Pe

= −p1 log p1 −
m∑

i=2
Pe

pi

Pe

log pi

Pe

− Pe log Pe

= H(Pe) + PeH( p2

Pe

,
p3

Pe

, .......,
pm

Pe

)

≤ H(Pe) + Pe log(m− 1),

since the maximum of H( p2
Pe

, p3
Pe

, ......., pm

Pe
) is attained by an uniform distribution. There-

fore, any X that can predicted with a probability error Pe must satisfy

H(X) ≤ H(Pe) + Pe log(m− 1).

The above inequality is the unconditional form of Fano’s inequality. Thus, an explicit
lower bound for Pe can be written as

Pe ≥
H(X)− log 2
log(m− 1) .

b) From the above exercise it is clear that the maximum of entropy H(X) or H(p) is
attained when p1 = 1−Pe and p2, p3, .....pm corresponds to a uniform distribution. That
is p2 = p3.... = pm = Pe

m−1 . Hence the probability vector p for which Fano’s inequality is
sharp can be written as

p = (1− Pe,
Pe

m− 1 , .......
Pe

m− 1).

This can be easily verified by calculating entropy with probability vector p = (1 −
Pe,

Pe

m−1 , ....... Pe

m−1), we get

H(p) = −p1 log p1 −
m∑

i=2

Pe

m− 1 log Pe

m− 1

= −(1− Pe) log(1− Pe)− Pe log Pe

m− 1
= −(1− Pe) log(1− Pe)− Pe log Pe + Pe log(m− 1)
= H(Pe) + Pe log(m− 1),

the equality holds.



Solution of Problem 3

a) From data processing inequality, we can write

I(X1; X3) ≤ I(X1; X2)
= H(X2)−H(X2|X1)
≤ H(X2) (Since H(X2|X1) ≥ 0)
≤ log k (maximum entropy of an uniform distribution)

(3)

Thus,the dependence between X1 and X3 is limited by the size of the bottleneck. That
is I(X1; X3) ≤ log k.

b) For k = 1, I(X1; X3) ≤ log 1 = 0 and since I(X1; X3) ≥ 0, we get I(X1; X3) = 0. So,
for k = 1, X1 and X3 are independent.

Solution of Problem 4
Define for t > 0

f(t) = lnt− t + 1. (4)

Taking the first derivative and equating to zero, we get

f ′(t) = 1
t
− 1 = 0 =⇒ t = 1. (5)

we get a maximal point, since second derivative f ′′(t) = − 1
t2 < 0 for ∀t > 0. Also

lim
t→0+

f(t) = −∞ = lim
t→∞

f(t) (6)

implies the above attained point is a global maximal point. Thus,

∀t > 0, f(t) ≤ f(1) = ln1− 1 + 1 = 0. (7)

For t = 0,
ln0 < 0− 1→ −∞ < −1.

Consequently, we can write

lnt ≤ t− 1, ∀t ≥ 0. (Hence proved) (8)


