Homework 10 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 24.01.2014

Exercise 28. A uniformly distributed message $m \in \{1, ..., n-1\}$ with n = pq with two primes $p \neq q$ is encrypted using the RSA-algorithm with public key (n, e).

- (a) Show that it is possible to compute the secret key d if m and n are not coprime, i.e., if $p \mid m$ or $q \mid m$.
- (b) Calculate the probability for m and n having common divisors.
- (c) How large is the probability of (b) roughly, if n has 1024 bits and the primes p and q are approximately of same size $(p, q \approx \sqrt{n})$.

Exercise 29. Alice is using the ElGamal encryption system for encrypting the messages m_1 and m_2 . The generated cryptograms are

 $C_1 = (1537, 2192)$ and $C_2 = (1537, 1393)$.

The public key of Alice is (p, a, y) = (3571, 2, 2905).

- (a) Verify that the public key is valid.
- (b) What did Alice do wrong?

RNTHAACHE

(c) The first message is given as $m_1 = 567$. Determine the message m_2 .

Exercise 30. Prove Euler's criterion: Let p > 2 be prime, then

 $c\in \mathbb{Z}_p^* \text{ is a quadratic residue modulo } p\Leftrightarrow c^{\frac{p-1}{2}}\equiv 1 \pmod{p}.$