Homework 10 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 24.01.2014

Exercise 28. A uniformly distributed message $m \in\{1, \ldots, n-1\}$ with $n=p q$ with two primes $p \neq q$ is encrypted using the RSA-algorithm with public key (n, e).
(a) Show that it is possible to compute the secret key d if m and n are not coprime, i.e., if $p \mid m$ or $q \mid m$.
(b) Calculate the probability for m and n having common divisors.
(c) How large is the probability of (b) roughly, if n has 1024 bits and the primes p and q are approximately of same size $(p, q \approx \sqrt{n})$.

Exercise 29. Alice is using the ElGamal encryption system for encrypting the messages m_{1} and m_{2}. The generated cryptograms are

$$
\mathbf{C}_{1}=(1537,2192) \text { and } \mathbf{C}_{2}=(1537,1393)
$$

The public key of Alice is $(p, a, y)=(3571,2,2905)$.
(a) Verify that the public key is valid.
(b) What did Alice do wrong?
(c) The first message is given as $m_{1}=567$. Determine the message m_{2}.

Exercise 30. Prove Euler's criterion: Let $p>2$ be prime, then

$$
c \in \mathbb{Z}_{p}^{*} \text { is a quadratic residue modulo } p \Leftrightarrow c^{\frac{p-1}{2}} \equiv 1 \quad(\bmod p) .
$$

