

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier31.01.2014

## Solution to Exercise 32.

RNTHAACHEN

- (a)  $gcd(a, p-1) \in \{1, 2, q, 2q\}$  for all  $a \in \mathbb{N}$  since  $p-1 = 2 \cdot q$  holds.
- (b) Consider the following congruence:

$$k(x_1 - x_1') \equiv x_0' - x_0 \pmod{p-1}.$$
 (1)

It follows directly that  $k = \log_a(b) \neq 0$  since b is a PE, and hence,  $b \neq 1$  holds. To determine k, assume both 0 < k, k' < p - 1 fulfill (1). Then

$$k(x_1 - x'_1) \equiv x'_0 - x_0 \pmod{p-1} \land k'(x_1 - x'_1) \equiv x'_0 - x_0 \pmod{p-1}$$
  

$$\Rightarrow (k - k')(x_1 - x'_1) \equiv 0 \pmod{p-1}.$$
(2)

It holds:

$$-(p-2) < k - k' < p - 2 \land$$
$$-(q-1) \le x_1 - x'_1 \le q - 1 \land$$
$$x_1 \neq x'_1$$

Let  $d = \operatorname{gcd}(x_1 - x'_1, p - 1)$ , then it follows from (1) that  $d \mid (x'_0 - x_0)$ :

1)  $d = 1 \Rightarrow k - k' \equiv 0 \pmod{p-1} \Rightarrow k \equiv k' \pmod{p-1}$ , i.e., there is the solution:

$$k = (x_1 - x'_1)^{-1}(x'_0 - x_0) \mod (p-1).$$

2) d > 1:

$$\stackrel{(1)}{\Rightarrow} k\left(\frac{x_1 - x_1'}{d}\right) \equiv \left(\frac{x_0' - x_0}{d}\right) \left( \mod \frac{p - 1}{d} \right). \tag{3}$$

It holds  $gcd\left(\frac{x_1-x_1'}{d}, \frac{p-1}{d}\right) = 1 \xrightarrow{1} (3)$  has exactly one solution  $k_0 < \frac{p-1}{d}$  which can be determined by using the Extended Euclidean Algorithm:

$$k_0 = \left(\frac{x_1 - x_1'}{d}\right)^{-1} \left(\frac{x_0' - x_0}{d}\right) \left( \mod \frac{p - 1}{d} \right).$$

For the solution of (1), there are multiple candidates  $k_l = k_0 + l\left(\frac{p-1}{d}\right), l = 0, \dots, d-1.$ Recall from (a) that  $p - 1 = 2q \Rightarrow d \in \{1, 2, q, 2q\} \Rightarrow d \in \{1, 2\}$  as  $(x_1 - x'_1) \leq q - 1 \Rightarrow d = 2$  as d > 1.Check: for l = 0 if  $a^{k_0} \equiv b \pmod{p}$  or for l = 1 if  $a^{k_0 + \frac{p-1}{2}} \equiv b \pmod{p}$  holds. (c) p, q are prime with p = 2q + 1 ( $\Rightarrow$  Sophie-Germain primes), a, b are primitive elements modulo p. The hash function is defined by:

$$h(m) = a^{x_0} b^{x_1} \mod p$$

with  $0 \le x_0, x_1 \le q - 1 \land m = x_0 + x_1 q$ .

The given function is slow but collision-free as it will be shown in the following.

Assume a collision exists, i.e., at least one pair of messages satisfies:

$$m \neq m' \wedge h(m) = h(m')$$
  
$$\Leftrightarrow m \neq m' \wedge a^{x_0} b^{x_1} \equiv a^{x'_0} b^{x'_1} \pmod{p}. \tag{4}$$

for two different messages m, m' with

$$m = x_0 + x_1 q,$$
  
 $m' = x'_0 + x'_1 q.$ 

Furthermore,  $x_1 - x'_1 \neq 0 \pmod{p-1}$  must hold, otherwise it would follow from (4) that m = m'.

Let  $k = \log_a(b)$  modulo p, so that:

$$a^{x_0}a^{kx_1} \equiv a^{x'_0}a^{kx'_1} \pmod{p}$$
  
 $\Leftrightarrow a^{k(x_1-x'_1)-(x'_0-x_0)} \equiv 1 \pmod{p}.$ 

Since a is a primitive element modulo p, we may consider the exponent-term as:

$$k(x_1 - x'_1) - (x'_0 - x_0) \equiv 0 \pmod{p - 1}$$
  
$$\Leftrightarrow k(x_1 - x'_1) \equiv x'_0 - x_0 \pmod{p - 1}.$$

As shown in (b), finding collisions is equivalent to computing the discrete logarithm. This is a hard problem because the determination of a discrete logarithm is computationally extensive.