Homework 2 in Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
08.11.2013

Exercise 4. Consider a permutation cipher and a plaintext of n symbols divided into blocks of l symbols each such that $l \mid n$, i.e.,

$$
\boldsymbol{m}=\left(m_{1}, \ldots, m_{n}\right)=\left(m_{1}, \ldots, m_{l}\left|m_{l+1}, \ldots, m_{2 l}\right| \cdots \mid m_{n-l+1}, \ldots, m_{n}\right)
$$

The key is a permutation π over the set $\{1, \ldots, l\}$. Each block of l message symbols $\hat{\boldsymbol{m}}=\left(\hat{m}_{1}, \ldots, \hat{m}_{l}\right)$ is encrypted as $\hat{\boldsymbol{c}}=\left(\hat{m}_{\pi(1)}, \ldots, \hat{m}_{\pi(l)}\right)$, whereas each block of ciphertext symbols $\hat{\boldsymbol{c}}=\left(\hat{c}_{1}, \ldots, \hat{c}_{l}\right)$ is decrypted as $\hat{\boldsymbol{m}}=\left(\hat{c}_{\pi^{-1}(1)}, \ldots, \hat{c}_{\pi^{-1}(l)}\right)$.
For block length $l=8$, you intercept the following ciphertext:

REXETSIH ONSICESI UCIFTFID REHTLIET.

(a) Decrypt the ciphertext ${ }^{1}$ and determine the permutations π and π^{-1}.
(b) Is the given cipher mono- or polyalphabetic? Substantiate your answer.

Exercise 5. The following ciphertext ${ }^{1} \mathbf{c}$ has been encrypted by a Caesar cipher (cf. lecture notes, Section 2.2.1):

```
SDSCS XCEPP SMSOX DDYZB YDOMD YEBCO VFOCG SDRVK GCGOX
OONDY ZBYDO MDYEB COVFO CGSDR WKDRO WKDSM C.
```

(a) Compute the index of coincidence $I_{\mathbf{c}}$. Is the given cipher mono- or polyalphabetic?
(b) Decrypt the ciphertext and determine the corresponding key k.

Explain your approach.

Exercise 6. Let e_{K} be an encryption function. Show for the Caesar cipher that subsequently encrypting a message m with a total number of n keys is the same as performing a single encryption with only one key, i.e.,

$$
e_{k_{n}}\left(e_{k_{n-1}}\left(\ldots\left(e_{k_{2}}\left(e_{k_{1}}(m)\right)\right) \ldots\right)\right)=e_{k}(m)
$$

(a) Compute the corresponding key k resulting from the sequence of keys k_{1}, \ldots, k_{n}.
(b) Does the order of the sequence of keys matter? Substantiate your answer.

[^0]
[^0]: ${ }^{1}$ The corresponding plaintext is an English text.

