Lehrstuhl für Theoretische Informationstechnik

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 08.11.2013

Solution to Exercise 5(b).

(b) Frequency analysis:

RNTHAACHE

В	С	D	Е	F	G	Κ	М	Ν	Ο	Р	R	S	V	W	Х	Y	Z
4	8	12	3	2	4	3	4	1	11	2	3	8	3	2	3	6	2

Map the most frequent letters to ETAOIN and derive the key.

First attempt, try $D \rightarrow E$:

$$D = e(E)$$

$$D \equiv E + k \pmod{26}$$

$$3 \equiv 4 + k \pmod{26}$$

$$k \equiv 3 - 4 \equiv -1 \equiv 25 \pmod{26}.$$

Decoding the first few letters of the ciphertext yields: TETDE... \Rightarrow This result is meaningless in English, try another key.

Second attempt, try $D \rightarrow T$:

 $\Rightarrow k \equiv -16 \equiv 10 \pmod{26}.$

The deciphered ciphertext yields:

IT IS INSUFFICIENT TO PROTECT OURSELVES WITH LAWS. WE NEED TO PROTECT OURSELVES WITH MATHEMATICS.

Remark: Feel free to program tools for encryption, decryption, frequency analysis, etc.

Solution to Exercise 6.

(a) The *l*-th encryption, $2 \le l \le n$, depends on the previous one:

$$e_{k_1}: c^{(1)} = (m + k_1) \mod 26,$$

$$e_{k_2}: c^{(2)} = (c^{(1)} + k_2) \mod 26,$$

$$\vdots$$

$$e_{k_l}: c^{(l)} = (c^{(l-1)} + k_l) \mod 26,$$

$$\vdots$$

$$e_{k_n}: c^{(n)} = (c^{(n-1)} + k_n) \mod 26.$$

By iterative substitution, we obtain e_k in terms of the plaintext m:

$$e_k: c^{(n)} = (m + \sum_{i=1}^n k_i) \mod 26$$

The effective key is: $k \equiv \sum_{i=1}^{n} k_i \pmod{26}$, such that we get:

$$e_k: \ c = (m+k) \mod 26.$$

(b) The order of keys does not matter since addition in a ring is commutative.

Remark: Feel free to apply this problem to other classical ciphers, e.g., the permutation cipher.