Homework 2 in Advanced Methods of Cryptography - Proposal for Solution -

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier

08.11.2013

Solution to Exercise 5(b).

(b) Frequency analysis:

B	C	D	E	F	G	K	M	N	O	P	R	S	V	W	X	Y	Z
4	8	12	3	2	4	3	4	1	11	2	3	8	3	2	3	6	2

Map the most frequent letters to ETAOIN and derive the key.
First attempt, try D \rightarrow E:

$$
\begin{aligned}
\mathrm{D} & =e(\mathrm{E}) \\
\mathrm{D} & \equiv \mathrm{E}+k \quad(\bmod 26) \\
3 & \equiv 4+k \quad(\bmod 26) \\
k & \equiv 3-4 \equiv-1 \equiv 25 \quad(\bmod 26) .
\end{aligned}
$$

Decoding the first few letters of the ciphertext yields: TETDE...
\Rightarrow This result is meaningless in English, try another key.

Second attempt, try D \rightarrow T:

$$
\Rightarrow k \equiv-16 \equiv 10 \quad(\bmod 26)
$$

The deciphered ciphertext yields:
IT IS INSUFFICIENT TO PROTECT OURSELVES WITH LAWS.
WE NEED TO PROTECT OURSELVES WITH MATHEMATICS.
Remark: Feel free to program tools for encryption, decryption, frequency analysis, etc.

Solution to Exercise 6.

(a) The l-th encryption, $2 \leq l \leq n$, depends on the previous one:

$$
\begin{array}{cl}
e_{k_{1}}: c^{(1)} & =\left(m+k_{1}\right) \bmod 26, \\
e_{k_{2}}: c^{(2)} & =\left(c^{(1)}+k_{2}\right) \bmod 26, \\
\vdots & \\
e_{k_{l}}: c^{(l)} & =\left(c^{(l-1)}+k_{l}\right) \bmod 26, \\
\vdots & \\
e_{k_{n}}: c^{(n)}=\left(c^{(n-1)}+k_{n}\right) \bmod 26 .
\end{array}
$$

By iterative substitution, we obtain e_{k} in terms of the plaintext m :

$$
e_{k}: c^{(n)}=\left(m+\sum_{i=1}^{n} k_{i}\right) \quad \bmod 26 .
$$

The effective key is: $k \equiv \sum_{i=1}^{n} k_{i}(\bmod 26)$, such that we get:

$$
e_{k}: c=(m+k) \quad \bmod 26
$$

(b) The order of keys does not matter since addition in a ring is commutative.

Remark: Feel free to apply this problem to other classical ciphers, e.g., the permutation cipher.

