

Exercise 9.

RNTHAACHEN

Let X, Y be random variables with support $\mathcal{X} = \{x_1, \ldots, x_m\}$ and $\mathcal{Y} = \{y_1, \ldots, y_d\}$. Assume that X, Y are distributed by $P(X = x_i) = p_i$ and $P(Y = y_j) = q_j$.

Let (X, Y) be the corresponding two-dimensional random variable with distribution $P(X = x_i, Y = y_j) = p_{ij}$.

Prove the following statements from Theorem 4.3:

- (a) $0 \le H(X)$ with equality if and only if $P(X = x_i) = 1$ for some *i*.
- (b) $H(X) \leq \log m$ with equality if and only if $P(X = x_i) = \frac{1}{m}$ for all *i*.
- (c) $H(X | Y) \leq H(X)$ with equality if and only if X and Y are stochastically independent (conditioning reduces entropy).
- (d) $H(X,Y) = H(X) + H(Y \mid X)$ (chain rule of entropies).
- (e) $H(X,Y) \leq H(X) + H(Y)$ with equality iff X and Y are stochastically independent.

Hint (a): $\ln z \le z - 1$ for all z > 0 with equality if and only if z = 1. Hint (b),(c): If f is a convex function, the Jensen inequality $f(E(X)) \le E(f(X))$ holds.

Exercise 10. Let $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ be a cryptosystem. Suppose that $P(\hat{M} = M) > 0$ for all $M \in \mathcal{M}, P(\hat{K} = K) > 0$ for all $K \in \mathcal{K}$ and $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$ holds. Show that if $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ has perfect secrecy, then

$$P(\hat{K} = K) = \frac{1}{|\mathcal{K}|}$$
 for all $K \in \mathcal{K}$

and for all $M \in \mathcal{M}, C \in \mathcal{C}$, there is a unique $K \in \mathcal{K}$ such that e(M, K) = C.

Exercise 11. Let $\mathcal{M} = \{a, b\}$ be the message space, $\mathcal{K} = \{K_1, K_2, K_3\}$ the key space and $\mathcal{C} = \{1, 2, 3, 4\}$ the ciphertext space. Let \hat{M}, \hat{K} be stochastically independent random variables with support \mathcal{M} and \mathcal{K} , respectively, and with probability distributions:

$$P(\hat{M} = a) = \frac{1}{4}, \ P(\hat{M} = b) = \frac{3}{4}, \ P(\hat{K} = K_1) = \frac{1}{2}, \ P(\hat{K} = K_2) = \frac{1}{4}, \ P(\hat{K} = K_3) = \frac{1}{4}.$$

The following table explains the encryption rules:

- (a) Compute the entropies $H(\hat{M}), H(\hat{K}), H(\hat{C})$ and the key equivocation $H(\hat{K} \mid \hat{C})$.
- (b) Why does this cryptosystem not have perfect secrecy?