Homework 4 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 22.11.2013

Exercise 9.

Let X, Y be random variables with support $\mathcal{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $\mathcal{Y}=\left\{y_{1}, \ldots, y_{d}\right\}$. Assume that X, Y are distributed by $P\left(X=x_{i}\right)=p_{i}$ and $P\left(Y=y_{j}\right)=q_{j}$.
Let (X, Y) be the corresponding two-dimensional random variable with distribution $P\left(X=x_{i}, Y=y_{j}\right)=p_{i j}$.
Prove the following statements from Theorem 4.3:
(a) $0 \leq H(X)$ with equality if and only if $P\left(X=x_{i}\right)=1$ for some i.
(b) $H(X) \leq \log m$ with equality if and only if $P\left(X=x_{i}\right)=\frac{1}{m}$ for all i.
(c) $H(X \mid Y) \leq H(X)$ with equality if and only if X and Y are stochastically independent (conditioning reduces entropy).
(d) $H(X, Y)=H(X)+H(Y \mid X)$ (chainrule of entropies).
(e) $H(X, Y) \leq H(X)+H(Y)$ with equality iff X and Y are stochastically independent.

Hint (a): $\ln z \leq z-1$ for all $z>0$ with equality if and only if $z=1$.
Hint (b), (c): If f is a convex function, the Jensen inequality $f(E(X)) \leq E(f(X))$ holds.

Exercise 10. Let $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ be a cryptosystem. Suppose that $P(\hat{M}=M)>0$ for all $M \in \mathcal{M}, P(\hat{K}=K)>0$ for all $K \in \mathcal{K}$ and $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$ holds. Show that if $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ has perfect secrecy, then

$$
P(\hat{K}=K)=\frac{1}{|\mathcal{K}|} \text { for all } K \in \mathcal{K}
$$

and for all $M \in \mathcal{M}, C \in \mathcal{C}$, there is a unique $K \in \mathcal{K}$ such that $e(M, K)=C$.

Exercise 11. Let $\mathcal{M}=\{a, b\}$ be the message space, $\mathcal{K}=\left\{K_{1}, K_{2}, K_{3}\right\}$ the key space and $\mathcal{C}=\{1,2,3,4\}$ the ciphertext space. Let \hat{M}, \hat{K} be stochastically independent random variables with support \mathcal{M} and \mathcal{K}, respectively, and with probability distributions:

$$
P(\hat{M}=a)=\frac{1}{4}, P(\hat{M}=b)=\frac{3}{4}, P\left(\hat{K}=K_{1}\right)=\frac{1}{2}, P\left(\hat{K}=K_{2}\right)=\frac{1}{4}, P\left(\hat{K}=K_{3}\right)=\frac{1}{4} .
$$

The following table explains the encryption rules:

	K_{1}	K_{2}	K_{3}
a	1	2	3
b	2	3	4

(a) Compute the entropies $H(\hat{M}), H(\hat{K}), H(\hat{C})$ and the key equivocation $H(\hat{K} \mid \hat{C})$.
(b) Why does this cryptosystem not have perfect secrecy?

