Homework 7 in Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
20.12.2013

Exercise 18.

(a) The Miller-Rabin Primality Test (MRPT) comprises a number of successive squarings. Suppose a 300 -digit number n is given. How many squarings are needed in the worst case during a single run of this primality test?
(b) Let $n \in \mathbb{N}$ be odd and composite. Repeat the MRPT with uniformly distributed random numbers $a \in\{2, \ldots, n-1\}$ until the output is , n is composite". Assume that the probablity of the test outcome „ n is prime" is $\frac{1}{4}$.
Compute the probability, that the number of such tests is equal to $M, M \in \mathbb{N}$. What is the expected value of the number of tests?

Exercise 19. The Miller-Rabin Primality Test (MPRT) is applied $m, m \in \mathbb{N}$, times to check, whether n is prime, where n is chosen according to a uniform distribution on the odd numbers in $\{N, \ldots, 2 N\}, N \in \mathbb{N}$.
(a) Show that

$$
P\left(,, n \text { is composite" } \mid \text { MRPT returns } m \text { times }{ }_{„} n \text { is prime" }\right) \leq \frac{\ln (N)-2}{\ln (N)-2+2^{2 m+1}}
$$

(b) How many repetitions m of the test are needed to ensure that the above probabilty stays below $1 / 1000$ for $N=2^{512}$?

Hint: Assume $P(, n$ is prime" $)=2 / \ln (N)$.

Exercise 20. Prove the Chinese Remainder Theorem:
Suppose m_{1}, \ldots, m_{r} are pairwise relatively prime, $a_{1}, \ldots, a_{r} \in \mathbb{N}$. The system of r congruences

$$
x \equiv a_{i}\left(\bmod m_{i}\right), \quad i=1, \ldots, r,
$$

has a unique solution modulo $M=\prod_{i=1}^{r} m_{i}$ given by

$$
x=\sum_{i=1}^{r} a_{i} M_{i} y_{i} \quad(\bmod M),
$$

where $M_{i}=M / m_{i}, y_{i}=M_{i}^{-1}\left(\bmod m_{i}\right), i=1, \ldots, r$.

