

Homework 7 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 20.12.2013

Exercise 18.

RNNTHAACHEN

- (a) The Miller-Rabin Primality Test (MRPT) comprises a number of successive squarings. Suppose a 300-digit number n is given. How many squarings are needed in the worst case during a single run of this primality test?
- (b) Let $n \in \mathbb{N}$ be odd and composite. Repeat the MRPT with uniformly distributed random numbers $a \in \{2, \ldots, n-1\}$ until the output is n is composite". Assume that the probability of the test outcome n is prime" is $\frac{1}{4}$.

Compute the probability, that the number of such tests is equal to $M, M \in \mathbb{N}$. What is the expected value of the number of tests?

Exercise 19. The Miller-Rabin Primality Test (MPRT) is applied $m, m \in \mathbb{N}$, times to check, whether n is prime, where n is chosen according to a uniform distribution on the odd numbers in $\{N, \ldots, 2N\}, N \in \mathbb{N}$.

(a) Show that

 $P(n \text{ is composite}^{"} | \text{ MRPT returns } m \text{ times } n \text{ is prime}^{"}) \leq \frac{\ln(N) - 2}{\ln(N) - 2 + 2^{2m+1}}.$

(b) How many repetitions m of the test are needed to ensure that the above probability stays below 1/1000 for $N = 2^{512}$?

Hint: Assume $P(n, n \text{ is prime}) = 2/\ln(N)$.

Exercise 20. Prove the Chinese Remainder Theorem: Suppose m_1, \ldots, m_r are pairwise relatively prime, $a_1, \ldots, a_r \in \mathbb{N}$. The system of r congruences

 $x \equiv a_i \pmod{m_i}, \qquad i = 1, \dots, r,$

has a unique solution modulo $M = \prod_{i=1}^{r} m_i$ given by

$$x = \sum_{i=1}^{r} a_i M_i y_i \pmod{M},$$

where $M_i = M/m_i, y_i = M_i^{-1} \pmod{m_i}, i = 1, ..., r.$