Homework 7 in Advanced Methods of Cryptography - Proposal for Solution -

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
20.12.2013

Solution to Exercise 20.

Chinese Remainder Theorem
Let m_{1}, \ldots, m_{r} be pair-wise relatively prime, i.e., $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $i \neq j \in\{1, \ldots, r\}$, and furthermore let $a_{1}, \ldots, a_{r} \in \mathbb{N}$. Then, the system of congruences

$$
x \equiv a_{i} \quad\left(\bmod m_{i}\right), i=1, \ldots, r,
$$

has a unique solution modulo $M=\prod_{i=1}^{r} m_{i}$ given by

$$
\begin{equation*}
x \equiv \sum_{i=1}^{r} a_{i} M_{i} y_{i} \quad(\bmod M) \tag{1}
\end{equation*}
$$

where $M_{i}=\frac{M}{m_{i}}, y_{i}=M_{i}^{-1}\left(\bmod m_{i}\right)$, for $i=1, \ldots, r$.
(a) Show that (1) is a valid solution for the system of congruences:

Let $i \neq j \in\{1, \ldots, r\}$. Since $m_{j} \mid M_{i}$ holds for all $i \neq j$, it follows:

$$
\begin{equation*}
M_{i} \equiv 0 \quad\left(\bmod m_{j}\right) \tag{2}
\end{equation*}
$$

Furthermore, we have $y_{j} M_{j} \equiv 1\left(\bmod m_{j}\right)$.
Note that from coprime factors of M, we obtain:

$$
\begin{equation*}
\operatorname{gcd}\left(M_{j}, m_{j}\right)=1 \Rightarrow \exists y_{j} \equiv M_{j}^{-1} \quad\left(\bmod m_{j}\right), \tag{3}
\end{equation*}
$$

and the solution of (1) modulo a corresponding m_{j} can be simplified to:

$$
x \equiv \sum_{i=1}^{r} a_{i} M_{i} y_{i} \stackrel{\sqrt[2]{2}}{=} a_{j} M_{j} y_{j} \stackrel{\sqrt[3]{3}}{=} a_{j} \quad\left(\bmod m_{j}\right)
$$

(b) Show that the given solution is unique for the system of congruences:

Assume that two different solutions y, z exist:

$$
\begin{aligned}
& y \equiv a_{i} \quad\left(\bmod m_{i}\right) \wedge z \equiv a_{i} \quad\left(\bmod m_{i}\right), i=1, \ldots, r, \\
\Rightarrow & 0 \equiv(y-z) \quad\left(\bmod m_{i}\right) \\
\Rightarrow & m_{i} \mid(y-z) \\
\Rightarrow & M \mid(y-z), \text { as } m_{1}, \ldots, m_{r} \text { are relatively prime for } i=1, \ldots, r, \\
\Rightarrow & y \equiv z \quad(\bmod M) .
\end{aligned}
$$

This is a contradiction, therefore the solution is unique.

