Review Exercise Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 05.03.2014

Exercise 1. Consider the following cryptosystem with message space $\mathcal M$ and ciphertext space $\mathcal C$

as $\mathcal{M} = \mathcal{C} = \{0, 1, 2\}^2$. A message $\mathbf{m} = (m_1, m_2)$ is encrypted by means of an invertible matrix $\mathbf{A} \in \mathbb{F}_3^{2 \times 2}$ as follows.

$$e(m_1, m_2) = (c_1, c_2)^T = \mathbf{A}(m_1, m_2)^T$$

This encryption scheme is used for a block cipher on messages of arbitrary length with the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

- (a) Encrypt the message $\mathbf{m} = (1, 2, 1, 1)$ in the Cipher Blockchaining Mode (CBC) with initial value $C_0 = (2, 1)$.
- (b) Specify the encryption and decryption rules for the Output Feedback Mode (OFB). Why is $Z_0 = C_0 = (0, 0)$ an inappropriate initial value?

In the following, the cryptosystem shall be investigated for invertible matrices of the form

$$\mathbf{A} = \begin{pmatrix} 1 & x \\ y & z \end{pmatrix} \in \mathbb{F}_3^{2 \times 2}.$$

- (c) Characterize the key space \mathcal{K} and determine its cardinality.
- (d) Specify the decryption rule $d(c_1, c_2)$.

RNTHAACHE

(e) Has the system perfect secrecy, if the keys are uniformly distributed over \mathcal{K} , the messages are uniformly distributed over \mathcal{M} , and both are stochastically independent? Substantiate your answer.

Exercise 2. A public key cryptosystem for a plaintext $m = \sum_{i=1}^{n} m_i 2^{i-1}$ with $n \in \mathbb{N}$ and $m_i \in \{0, 1\}$ is given as follows:

Key Generation:

- (1) Choose a random sequence $\boldsymbol{w} = (w_1, w_2, \dots, w_n)$, with $w_i \in \mathbb{N}$, such that $w_{k+1} > \sum_{i=1}^k w_k$ holds for $k = 1, \dots, n-1$.
- (2) Choose $q \in \mathbb{N}$, such that $q > \sum_{i=1}^{n} w_i$ holds.
- (3) Choose $r \in \mathbb{N}$ with $1 \leq r < q$, such that gcd(r,q) = 1 holds.
- (4) Compute $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_n)$ with $\beta_i = rw_i \mod q$.
- (5) The public key is $\boldsymbol{\beta}$ and the secret key is (\boldsymbol{w}, q, r) .

Encryption Procedure:

The plaintext is encrypted as $c = \sum_{i=1}^{n} m_i \beta_i$.

Decryption Procedure:

 $d \leftarrow cr^{-1} \mod q$ for l = n downto 1 do if $d \ge w_l$ then $m_l \leftarrow 1$ else $m_l \leftarrow 0$ end if $d \leftarrow d - m_l w_l$ end for

(a) Show that $(w, q, r) = ((2^0, 2^1, \dots, 2^{n-1}), 2^n, 1)$ is a weak key in the sense that m = c.

Assume that $r \neq 1$ in the following.

(b) Show that β_1, \ldots, β_n are pairwise different.

Alice encrypts two plaintexts $m \neq m'$ of the same length n with the same key β and obtains two different ciphertexts c and c'. A confidential source tells you that m and m' only differ in one bit position $1 \leq j \leq n$, i.e., $m_j \neq m'_j$ and $m_i = m'_i$ for all $i \neq j$.

(c) How can the bit position j be determined?

Bob encrypts a plaintext m of length n = 5. He chooses w_1 at random and uses the rules $w_i = 2w_{i-1} + 1$ for i = 2, ..., n and q = 257. His public key is $\boldsymbol{\beta} = (168, 103, 230, 227, 221)$.

- (d) Your confidential source provides $w_4 = 63$. Determine the secret key (\boldsymbol{w}, q, r) for the given $\boldsymbol{\beta}$. Hint: $257 \cdot 7 31 \cdot 58 = 1$.
- (e) Now, you receive the ciphertext c = 846. Compute *m* for the given values.

Exercise 3. Alice uses the RSA cryptosystem with public key (n, e) = (4891, 1901) for signing.

- (a) Compute the corresponding private key d.
- (b) Generate the RSA signature $s = m^d \mod n$ for the message m = 2013.

In the following, a protocol for authentication of Alice (A) towards Bob (B) is given. It is based on an RSA system with public keys (n, e_A) , (n, e_B) and private keys d_A , d_B .

1) B chooses a random number $2 \leq r < n$, calculates $r_A = r^{e_A} \mod n$ and sends r_A to A.

2) A calculates $r = r_A^{d_A} \mod n$ and $r_B = r^{e_B} \mod n$ and sends r_B to B.

3) B checks, if $r = r_B^{d_B} \mod n$ holds. If this is true, A is authenticated towards B.

Alice uses two different public keys $(e \neq e_A)$ for signing and authentication. Oscar (O) does not know the private keys of Alice.

- (c) How can Oscar impersonate Alice towards Bob?
- (d) Why is Oscar not able to determine the random number r?

In the following, Alice utilizes the same public key $(e = e_A)$ for both signing and authentication.

(e) Is it possible for Oscar to now determine the random number r? If so, how?

Exercise 4. Consider the cubic equation $E: y^2 = x^3 + 4x + 1$.

- (a) Is E an elliptic curve over \mathbb{F}_5 ? Substantiate your answer.
- (b) Determine all points on the elliptic curve E and the order of the corresponding group.
- (c) Is point Q = (1, 1) a generator of the group? Substantiate your answer.

In analogy to the Square-and-Multiply algorithm in a ring \mathbb{Z}_n , the k-th multiple of P can be algorithmically computed based on doubling and addition on an elliptic curve over a field \mathbb{F}_q . You may use the binary representation of factor $k = (k_m, \ldots, k_0)_2 = \sum_{i=0}^m k_i 2^i$.

- (d) Describe 45P in terms of doubling and addition of P only.
- (e) Formulate an *iterative Double-and-Add* algorithm $f_{it}(P,k)$ to calculate kP.
- (f) Give a recursive version $f_{\rm rec}(P,k)$ of the above Double-and-Add algorithm.