Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 1

Friday, April 15, 2016

Problem 1. (Multiplicative Inverses) Take a look at the appendix of the lecture notes and solve the following tasks.
a) Compute $1234 \bmod 357$ using the standard long division with a remainder.
b) Compute the greatest common divisor of 357 and 1234 , i.e., $\operatorname{gcd}(357,1234)$, using the Euclidean algorithm.
c) Compute the multiplicative inverse of 357 modulo 1234 , i.e., $357^{-1} \bmod 1234$ using the extended Euclidean algorithm. Check if $357 \cdot 357^{-1} \equiv 1 \bmod 1234$ holds.

Consider polynomials with the indeterminate x and coefficients in $\mathbb{Z}_{2}=\{0,1\}$.
d) A polynomial $a(x)$ is a multiplicative inverse of $b(x)$ modulo $m(x)$ if the product yields $b(x) \cdot a(x) \equiv 1 \bmod m(x)$. Compute $\operatorname{gcd}(b(x), m(x))$ and the multiplicative inverse of $b(x)=x^{3}+x+1$ modulo $m(x)=x^{5}+x^{3}+1$.

Hint: Addition of the coefficients is taken modulo 2.

Problem 2. (Dividers) Let $a, b, c, d \in \mathbb{Z}$. The integer a divides b if and only if there exists a $k \in \mathbb{Z}$ such that $a \cdot k=b$. This property is denoted by $a \mid b$. Prove the following implications:
a) $a \mid b$ and $b|c \Rightarrow a| c$.
b) $a \mid b$ and $c|d \quad \Rightarrow \quad(a c)|(b d)$.
c) $a \mid b$ and $a|c \Rightarrow a|(x b+y c) \quad \forall x, y \in \mathbb{Z}$.

