Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 2

Friday, April 29, 2016

Problem 1. (Scytale) For the encryption with an ancient Scytale, a parchment is wrapped around a wand such that there are $l \in \mathbb{N}$ rows and $k \in \mathbb{N}$ columns, cf. the conceptual figure. The letters of the plaintext $\boldsymbol{m}=\left(m_{1}, m_{2}, \ldots, m_{k l}\right)$ are written columnwise on the parchment. After unwrapping, the cryptogram is given on the stripe of parchment.

a) Give the entries $\pi(i)$ for $i \in\{1,2, l, l+1,(k-1) l+1, k l-1, k l\}$ for the permutation

$$
\boldsymbol{\pi}=\left(\begin{array}{cccccccccc}
1 & 2 & \ldots & l & l+1 & \ldots & (k-1) l+1 & \ldots & k l-1 & k l \\
\pi(1) & \pi(2) & \ldots & \pi(l) & \pi(l+1) & \ldots & \pi((k-1) l+1) & \ldots & \pi(k l-1) & \pi(k l)
\end{array}\right)
$$

which describes the encryption scheme of the Scytale with l rows and k columns.

Problem 2. (sequence of affine ciphers)
Suppose you encrypt a message $m \in \mathbb{Z}_{q}$ using an affine cipher $e_{k}(m)$ with key $k=(a, b) \in$ $\mathbb{Z}_{q}^{*} \times \mathbb{Z}_{q}$.
a) Compute the n-fold encryption $c=e_{k_{n}}\left(\ldots e_{k_{2}}\left(e_{k_{1}}(m)\right) \ldots\right)$ for different keys $k_{i}=\left(a_{i}, b_{i}\right)$ with $i=1, \ldots, n$.
b) Is there an advantage using n subsequent encryptions, rather than using a single affine cipher? Substantiate your claim.

Problem 3. (number of keys) Compute the number of possible keys for the following cryptosystems:
a) Substitution cipher with the alphabet $\Sigma=\mathbb{Z}_{l}=\{0, \ldots, l-1\}$
b) Affine cipher with the alphabet $\Sigma=\mathbb{Z}_{26}=\{0, \ldots, 25\}$
c) Permutation cipher with a fixed blocklength L

Problem 4. (weak permutations) The permutation $\pi=(1)(2,11,5,8)(3,6,7,4)(9,10)$ defines a permutation cipher with block length $k=11$.
(a) Determine the number of character sequences of length 11 over the usual alphabet with 26 letters whose ciphertext is equal to the plaintext.

Hint: $(2,11,5,8)$ means that position 2 is moved to position 11,11 to 5,5 to 8 and 8 to 2 .

