Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 4

Friday, May 13, 2016

Problem 1. (properties of entropy)
Let X, Y be random variables with support $\mathcal{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $\mathcal{Y}=\left\{y_{1}, \ldots, y_{d}\right\}$. Assume that X, Y are distributed by $P\left(X=x_{i}\right)=p_{i}$ and $P\left(Y=y_{j}\right)=q_{j}$. Let (X, Y) be the corresponding two-dimensional random variable with distribution $P\left(X=x_{i}, Y=y_{j}\right)=p_{i j}$. Prove the following statements from Theorem 4.3:
(a) $0 \leq H(X)$ with equality if and only if $P\left(X=x_{i}\right)=1$ for some i.
(b) $H(X) \leq \log m$ with equality if and only if $P\left(X=x_{i}\right)=\frac{1}{m}$ for all i.
(c) $H(X \mid Y) \leq H(X)$ with equality if and only if X and Y are stochastically independent (conditioning reduces entropy).
(d) $H(X, Y)=H(X)+H(Y \mid X)$ (chainrule of entropies).
(e) $H(X, Y) \leq H(X)+H(Y)$ with equality iff X and Y are stochastically independent.

Hint (a): $\ln z \leq z-1$ for all $z>0$ with equality if and only if $z=1$.
Hint (b), (c): If f is a convex function, the Jensen inequality $f(E(X)) \leq E(f(X))$ holds.

Problem 2. (entropy and key equivocation) Let $\mathcal{M}=\{a, b\}$ be the message space, $\mathcal{K}=$ $\left\{K_{1}, K_{2}, K_{3}\right\}$ the key space and $\mathcal{C}=\{1,2,3,4\}$ the ciphertext space. Let \hat{M}, \hat{K} be stochastically independent random variables with support \mathcal{M} and \mathcal{K}, respectively, and with probability distributions:

$$
P(\hat{M}=a)=\frac{1}{4}, P(\hat{M}=b)=\frac{3}{4}, P\left(\hat{K}=K_{1}\right)=\frac{1}{2}, P\left(\hat{K}=K_{2}\right)=\frac{1}{4}, P\left(\hat{K}=K_{3}\right)=\frac{1}{4} .
$$

The following table explains the encryption rules:

	K_{1}	K_{2}	K_{3}
a	1	2	3
b	2	3	4

a) Compute the entropies $H(\hat{M}), H(\hat{K}), H(\hat{C})$ and the key equivocation $H(\hat{K} \mid \hat{C})$.
b) Why does this cryptosystem not have perfect secrecy?

Problem 3. (entropy of function) Let X, Y be discrete random variables on a set Ω. Show that for any function $f: X(\Omega) \times Y(\Omega) \rightarrow \mathbb{R}$, it holds:

$$
H(X, Y, f(X, Y))=H(X, Y)
$$

Problem 4. We have a cryptosystem with only two possible plaintexts. The plaintext a occurs with probability $1 / 3$ and b with probability $2 / 3$. There are two keys, k_{1} and k_{2}, and each is used with probability $1 / 2$. Key k_{1} encripts a to A and b to B. Key k_{2} encripts a to B and b to A.
a) Calculate the entropy of the plaintext, $H(M)$.
b) Show that a Vernam Cipher with $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ has perfect secrecy. Indicate one disadvantage of the Vernam Cipher.
c) Let $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ be a cryptosystem with perfect secrecy. Show that:

$$
H(C, M)=H(C)+H(M)
$$

d) Let $\tilde{H}(Y \mid X)=-\sum_{x, y} p_{Y}(y \mid x) \log _{2} p_{Y}(y \mid x)$. We assume X and Y to be discrete random variables. Show that if X and Y are independent, and X has $|\mathcal{X}| \geq 0$ possible outputs, then $\tilde{H}(Y \mid X)=|\mathcal{X}| \cdot H(Y) \geq H(Y)$.

