

Exercise 7 Friday, June 10, 2016

Problem 1. (determine φ) Let $\varphi : \mathbb{N} \to \mathbb{N}$ be the Euler φ -function, i.e., $\varphi(n) = |\mathbb{Z}_n^*|$.

- **a)** Determine $\varphi(p)$ for a prime p.
- **b)** Determine $\varphi(p^k)$ for a prime p and $k \in \mathbb{N}$.
- c) Determine $\varphi(p \cdot q)$ for two different primes $p \neq q$.
- **d)** Determine $\varphi(4913)$ and $\varphi(899)$.

Problem 2. (proof Euler's theorem) Let $\varphi : \mathbb{N} \to \mathbb{N}$ be the Euler φ -function, i.e., $\varphi(n) = |\mathbb{Z}_n^*|$. Furthermore, let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n^*$. Prove that

$$a^{\varphi(n)} \equiv 1 \pmod{n}.$$

Problem 3. (proof Wilson's primality criterion)

Wilson's primality criterion: An integer n > 1 is prime $\Leftrightarrow (n-1)! \equiv -1 \pmod{n}$.

- a) Prove Wilson's primality criterion.
- b) Check if 29 is a prime number by using the criterion above.
- c) Is this criterion useful in practical applications?