Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 8

Friday, June 17, 2016

Problem 1. (proof infinitely many primes) Prove that there are infinitely many primes.
Hint: Assume there are finitely many primes and construct a P that is not divisible by the finite number primes.

Problem 2. (MRPT error probability) The Miller-Rabin Primality Test (MPRT) is applied m times, with $m \in \mathbb{N}$, to check whether n is prime. The number n is chosen according to a uniform distribution on the odd numbers in $\{N, \ldots, 2 N\}, N \in \mathbb{N}$.
a) Show that
$P(" n$ is composite" \mid MRPT returns m times $" n$ is prime" $) \leq \frac{\ln (N)-2}{\ln (N)-2+2^{2 m+1}}$.
b) How many repetitions m are needed to ensure that the above probability stays below $1 / 1000$ for $N=2^{512}$?

Hint: Assume $P(" n$ is prime" $)=2 / \ln (N)$.

Problem 3. (MRPT expected number of tests) Let $n \in \mathbb{N}$ be odd and composite. Repeat the MRPT with uniformly distributed random numbers $a \in\{2, \ldots, n-1\}$ until the output is " n is composite". Assume that the probability of the test outcome " n is prime" is $\frac{1}{4}$.
a) Compute the probability, that the number of such tests is equal to M, for $M \in \mathbb{N}$.
b) What is the expected value of the number of tests?

Problem 4. (Miller-Rabin Primality Test)
a) Use the Miller-Rabin Primality Test to prove that 341 is composite.
b) The Miller-Rabin Primality Test comprises a number of successive squarings. Suppose a 300 -digit number n is given. How many squarings are needed in worst case during a single run of this primality test?

