

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 9

Friday, June 24, 2016

Problem 1. (Proof Chinese Remainder Theorem) Prove the Chinese Remainder Theorem: Suppose m_1, \ldots, m_r are pairwise relatively prime, $a_1, \ldots, a_r \in \mathbb{N}$.

The system of r congruences

$$x \equiv a_i \pmod{m_i}, \qquad i = 1, \dots, r,$$

has a unique solution modulo $M = \prod_{i=1}^{r} m_i$ given by

$$x \equiv \sum_{i=1}^{r} a_i M_i y_i \pmod{M},$$

where $M_i = M/m_i, y_i = M_i^{-1} \pmod{m_i}, i = 1, ..., r.$

Problem 2. (proof existence of a primitive element modulo n)

Let $n \in \mathbb{N}$. Show that there exists a primitive element modulo n in \mathbb{Z}_n^* if and only if:

$$n \in M = \{2, 4, p^k, 2p^k \mid p \ge 3 \text{ prime}, k \in \mathbb{N}\}$$

holds (cf. Theorem 7.2 a) in lecture notes).

Hint 1: It has already been shown before that $n = \prod_i \varphi(p_i^{k_i}) = \prod_i p_i^{k_i-1}(p_i-1)$.

Hint 2: " \Rightarrow " Show by induction that for each odd prime p, there exists a primitive element modulo p such that for all k > 1 it holds $g^{\varphi(p^{k-1})} \not\equiv 1 \mod p^k$.

Hint 3: " \Leftarrow " Show for $n = 2^k$ with k > 2, that for all $a \in \mathbb{Z}_n^*$ it holds $a^{\varphi(n)/2} \equiv 1 \mod n$.

Problem 3. (properties of the discrete logarithm) We examine the properties of the discrete logarithm.

- a) Compute the discrete logarithm of 18 and 1 in the group \mathbb{Z}_{79}^* with generator 3 (by trial and error if necessary).
- **b)** How many tryings would be necessary to determine the discrete logarithm in the worst case?