Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 9

Friday, June 24, 2016

Problem 1. (Proof Chinese Remainder Theorem)
Prove the Chinese Remainder Theorem: Suppose m_{1}, \ldots, m_{r} are pairwise relatively prime, $a_{1}, \ldots, a_{r} \in \mathbb{N}$.

The system of r congruences

$$
x \equiv a_{i}\left(\bmod m_{i}\right), \quad i=1, \ldots, r,
$$

has a unique solution modulo $M=\prod_{i=1}^{r} m_{i}$ given by

$$
x \equiv \sum_{i=1}^{r} a_{i} M_{i} y_{i} \quad(\bmod M)
$$

where $M_{i}=M / m_{i}, y_{i}=M_{i}^{-1}\left(\bmod m_{i}\right), i=1, \ldots, r$.

Problem 2. (proof existence of a primitive element modulo n)
Let $n \in \mathbb{N}$. Show that there exists a primitive element modulo n in \mathbb{Z}_{n}^{*} if and only if:

$$
n \in M=\left\{2,4, p^{k}, 2 p^{k} \mid p \geq 3 \text { prime, } k \in \mathbb{N}\right\}
$$

holds (cf. Theorem 7.2 a) in lecture notes).

Hint 1: It has already been shown before that $n=\prod_{i} \varphi\left(p_{i}^{k_{i}}\right)=\prod_{i} p_{i}^{k_{i}-1}\left(p_{i}-1\right)$.
Hint 2: " \Rightarrow " Show by induction that for each odd prime p, there exists a primitive element modulo p such that for all $k>1$ it holds $g^{\varphi\left(p^{k-1}\right)} \not \equiv 1 \bmod p^{k}$.
Hint 3: " \Leftarrow "Show for $n=2^{k}$ with $k>2$, that for all $a \in \mathbb{Z}_{n}^{*}$ it holds $a^{\varphi(n) / 2} \equiv 1 \bmod n$.

Problem 3. (properties of the discrete logarithm) We examine the properties of the discrete logarithm.
a) Compute the discrete logarithm of 18 and 1 in the group \mathbb{Z}_{79}^{*} with generator 3 (by trial and error if necessary).
b) How many tryings would be necessary to determine the discrete logarithm in the worst case?

