Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 10

Friday, July 1, 2016

Problem 1. (prove Proposition 7.5) Prove Proposition 7.5 from the lecture, which gives a possibility to generate a primitive element modulo n :
Let $p>3$ be prime, $p-1=\prod_{i=1}^{k} p_{i}^{t_{i}}$ the prime factorization of $p-1$. Then,
$a \in \mathbb{Z}_{p}^{*}$ is a primitive element modulo $p \Leftrightarrow a^{\frac{p-1}{p_{i}}} \not \equiv 1(\bmod p)$ for all $i \in\{1, \ldots, k\}$.

Problem 2. (calculating the basis) Given $a^{13} \equiv 17 \bmod 31$, calculate the basis a.

Problem 3. (Diffie-Hellman key exchange) Alice and Bob perform a Diffie-Hellman key exchange with prime $p=107$ and primitive element $a=2$. Alice chooses the random number $x_{A}=66$ and Bob the random number $x_{B}=33$.
a) Calculate the shared key for both users.
b) Show that $b=103$ is also a primitive element $\bmod p$.

Problem 4. (Proof of 8.3) Let $n=p \cdot q, p \neq q$ be prime and x a non-trivial solution of $x^{2} \equiv 1(\bmod n)$, i.e., $x \not \equiv \pm 1(\bmod n)$.

Then

$$
\operatorname{gcd}(x+1, n) \in\{p, q\}
$$

