

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 10 Friday, July 1, 2016

Problem 1. (prove Proposition 7.5) Prove Proposition 7.5 from the lecture, which gives a possibility to generate a primitive element modulo n:

Let p > 3 be prime, $p - 1 = \prod_{i=1}^{k} p_i^{t_i}$ the prime factorization of p - 1. Then,

 $a \in \mathbb{Z}_p^*$ is a primitive element modulo $p \Leftrightarrow a^{\frac{p-1}{p_i}} \not\equiv 1 \pmod{p}$ for all $i \in \{1, \dots, k\}$.

Problem 2. (calculating the basis) Given $a^{13} \equiv 17 \mod 31$, calculate the basis a.

Problem 3. (Diffie-Hellman key exchange) Alice and Bob perform a Diffie-Hellman key exchange with prime p = 107 and primitive element a = 2. Alice chooses the random number $x_A = 66$ and Bob the random number $x_B = 33$.

- a) Calculate the shared key for both users.
- **b**) Show that b = 103 is also a primitive element mod p.

Problem 4. (Proof of 8.3) Let $n = p \cdot q$, $p \neq q$ be prime and x a non-trivial solution of $x^2 \equiv 1 \pmod{n}$, i.e., $x \not\equiv \pm 1 \pmod{n}$.

Then

$$gcd (x+1, n) \in \{p, q\}$$