Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 11

Friday, July 8, 2016

Problem 1. (number of Primitive Elements Modulo n) Prove the following statement:
If there exists a primitive elements modulo n, then there are $\varphi(\varphi(n))$ many.

Problem 2. (Shamir no-key protocol) Alice and Bob are using Shamir's no-key protocol to exchange a secret message. They agree to use the prime $p=31337$ for their communication. Alice chooses the random number $a=9999$ while Bob chooses $b=1011$. Alice's message is $m=3567$.
a) Calculate all exchanged values c_{1}, c_{2}, and c_{3} following the protocol.

Hint: You may use $6399^{1011} \equiv 29872(\bmod 31337)$.

Problem 3. (RSA encryption) A uniformly distributed message $m \in\{1, \ldots, n-1\}$ with $n=p q$ with two primes $p \neq q$ is encrypted using the RSA-algorithm with public key (n, e).
a) Show that it is possible to compute the secret key d if m and n are not coprime, i.e., if $p \mid m$ or $q \mid m$.
b) Calculate the probability for m and n having common divisors.
c) How large is the probability of (b) roughly, if n has 1024 bits and the primes p and q are approximately of same size $(p, q \approx \sqrt{n})$.

Problem 4. (Euler-Phi and RSA)
Let u and v be distinct odd primes, and let $n=u \cdot v$. Furthermore, suppose that an integer x satisfies $\operatorname{gcd}(x, u \cdot v)=1$.
a) Show that $x^{\frac{1}{2} \varphi(n)} \equiv 1(\bmod u)$ and $x^{\frac{1}{2} \varphi(n)} \equiv 1(\bmod v)$.
b) Show that $x^{\frac{1}{2} \varphi(n)} \equiv 1(\bmod n)$.
c) Show that if $e d \equiv 1\left(\bmod \frac{1}{2} \varphi(n)\right)$ holds for two integers d and e, then we obtain $x^{e d} \equiv x$ $(\bmod n)$.

