Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 2

- Proposed Solution -

Friday, April 29, 2016

Solution of Problem 1

It is helpful to organize the plaintext $\boldsymbol{m}=\left(m_{1}, m_{2}, m_{3}, \ldots, m_{k l}\right)$ in a matrix with l rows and k columns as shown on the left hand side. The second matrix on the right hand side describes the mapping of the positions to the ciphertext.

$$
\begin{array}{cccc|cccc}
m_{1} & m_{l+1} & \cdots & m_{(k-1) l+1} & 1 & 2 & \cdots & k \\
m_{2} & \cdots & \cdots & \vdots & k+1 & \cdots & \cdots & \vdots \\
\vdots & \cdots & \cdots & \vdots & \vdots & \cdots & \cdots & \vdots \\
\vdots & \cdots & \cdots & m_{k l-1} & \vdots & \cdots & \cdots & (l-1) k \\
m_{l} & \cdots & \cdots & m_{k l} & (l-1) k+1 & \cdots & \cdots & k l
\end{array}
$$

From this the encryption of the Scytale is described by a permutation $\boldsymbol{\pi}$ with:

$$
\left.\boldsymbol{\pi}=\left(\begin{array}{ccccccccc}
1 & 2 & \ldots & l & l+1 & \ldots & (k-1) l+1 & \ldots & k l-1 \\
1 & k+1 & \ldots & (l-1) k+1 & 2 & \ldots & k & \ldots & (l-1) k
\end{array}\right) k l\right)
$$

Solution of Problem 2

a) Applying the n encryption functions successively results in:

$$
\begin{aligned}
c_{1} & \equiv a_{1} m+b_{1} \quad \bmod q \\
c_{2} & \equiv a_{2} c_{1}+b_{2} \equiv a_{2}\left(a_{1} m+b_{1}\right)+b_{2} \\
& \equiv a_{2} a_{1} m+a_{2} b_{1}+b_{2} \quad \bmod q \\
c_{3} & \equiv a_{3} c_{2}+b_{3} \\
& \equiv a_{3}\left(a_{2} a_{1} m+a_{2} b_{1}+b_{2}\right)+b_{3} \\
& \equiv a_{3} a_{2} a_{1} m+a_{3} a_{2} b_{1}+a_{3} b_{2}+b_{3} \quad \bmod q \\
& \vdots \\
c_{n} & \equiv \prod_{i=1}^{n} a_{i} m+\sum_{i=1}^{n-1} b_{i}\left(\prod_{j=i+1}^{n-1} a_{j}\right)+b_{n} \quad \bmod q \\
& \equiv \prod_{i=1}^{n} a_{i} m+\sum_{i=1}^{n} b_{i}\left(\prod_{j=i+1}^{n} a_{j}\right) \quad \bmod q
\end{aligned}
$$

using the definition of the empty product in the last step.

Note: A complete mathematical proof would involve the induction $n \rightarrow n+1$:

$$
\begin{aligned}
c_{n+1} & \equiv \prod_{i=1}^{n+1} a_{i} m+\sum_{i=1}^{n+1} b_{i} \prod_{j=i+1}^{n+1} a_{j} \\
& \equiv a_{n+1} \prod_{i=1}^{n} a_{i} m+a_{n+1} \sum_{i=1}^{n} b_{i} \prod_{j=i+1}^{n} a_{j}+b_{n+1} \\
& \equiv a_{n+1} c_{n}+b_{n+1} \quad \square
\end{aligned}
$$

b) We obtain an effective key:

$$
k=\left(a=\prod_{i=1}^{n} a_{i} \quad \bmod q, b=\sum_{i=1}^{n-1} b_{i}\left(\prod_{j=i+1}^{n} a_{j}\right)+b_{n} \quad \bmod q\right)
$$

Therefore, successively encrypting with two different affine functions is the same as encrypting with only one effective key $k=(a, b)$.

Solution of Problem 3

a) Substitution cipher: Keys are permutations over the symbol alphabet $\Sigma=\left\{x_{0}, \ldots, x_{l-1}\right\}$. \Rightarrow As known from combinatorics, there are l ! permutations, i.e., l ! possible keys.
b) Affine cipher with key (b, a) and with symbols in alphabet \mathbb{Z}_{26} :

$$
\begin{aligned}
c_{i} & =\left(a \cdot m_{i}+b\right) \bmod 26 \\
m_{i} & =a^{-1} \cdot\left(c_{i}-b\right) \bmod 26
\end{aligned}
$$

For a valid decryption a^{-1} must exist. a^{-1} exists if $\operatorname{gcd}(a, 26)=1$ holds
$\Rightarrow a \in \mathbb{Z}_{26}^{*} .26$ has only 2 dividers as $26=13 \cdot 2$ is its prime factorization.

$$
\mathbb{Z}_{26}^{*}=\left\{a \in \mathbb{Z}_{26} \mid \operatorname{gcd}(a, 26)=1\right\}=\{1,3,5,7,9,11,15,17,19,21,23,25\} \subset \mathbb{Z}_{26}
$$

$\Rightarrow\left|\mathbb{Z}_{26}^{*}\right|=12$ possible keys for a.
There is no restriction on $b \in \mathbb{Z}_{26}$, i.e., $\left|\mathbb{Z}_{26}\right|=26$ possible keys for b.
Altogether, we have $\left|\mathbb{Z}_{26} \times \mathbb{Z}_{26}^{*}\right|=\left|\mathbb{Z}_{26}\right| \cdot\left|\mathbb{Z}_{26}^{*}\right|=26 \cdot 12=312$ possible keys (a, b).
c) Permutation cipher with block length $L \Rightarrow L$! permutations $\Rightarrow L$! possible keys.

Solution of Problem 4

The message space of a finite sequence of length $k=11$ is:

$$
\mathcal{M}=\left\{\left(m_{1}, \ldots, m_{11}\right) \mid m_{i} \in \mathcal{X}\right\}
$$

with the alphabet $\mathcal{X}=\{a, b, \ldots, z\}=\{0,1, \ldots, 25\}$, and $|\mathcal{X}|=26$.
In the given task, there are 4 blocks with cyclic permutations. These blocks are not changed if the letters are the same inside each individual block. Unchanged sequences are subsumed by:

$$
\begin{aligned}
\hat{\mathcal{M}}= & \left\{\left(m_{1}, \ldots, m_{11}\right) \mid m_{1} \in \mathcal{X}, m_{2}=m_{11}=m_{5}=m_{8} \in \mathcal{X}, m_{3}=m_{6}=m_{7}=m_{4} \in \mathcal{X}\right. \\
& \left.m_{9}=m_{10} \in \mathcal{X}\right\}
\end{aligned}
$$

The total number of such sequences is $|\hat{\mathcal{M}}|=|\mathcal{X}|^{4}=456976$.
Remark: However, compared to $|\mathcal{M}|=|\mathcal{X}|^{11} \approx 3.6 \cdot 10^{15}$, this is only a minor restriction.
(An unchanged plaintext in English is 'MISSISSIPPI'.)

