Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 4
 - Proposed Solution -

Friday, May 13, 2016

Solution of Problem 1

Theorem 4.3 shall be proven.
a) X is a discrete random variable with $p_{i}=P\left(X=x_{i}\right), i=1, \ldots, m$. It holds

$$
H(X)=-\sum_{i} p_{i} \log \left(p_{i}\right) \geq 0
$$

as $p_{i} \geq 0$ and $-\log \left(p_{i}\right) \geq 0$ for $0<p_{i} \leq 1$ and $0 \cdot \log 0=0$ per definition.
Equality holds, if all addends are zero, i.e.,

$$
p_{i} \log \left(p_{i}\right)=0 \Leftrightarrow p_{i} \in\{0,1\} \quad i=1, \ldots, m,
$$

as $p_{i}>0$ and $-\log \left(p_{i}\right)>0$, thus, $-p_{i} \log \left(p_{i}\right)>0$ for $0<p_{i}<1$.
b) It holds

$$
\begin{aligned}
H(X)-\log (m) & =-\sum_{i} p_{i} \log \left(p_{i}\right)-\underbrace{\sum_{i} p_{i}}_{=1} \log (m) \\
& =\sum_{i: p_{i}>0} p_{i} \log \left(\frac{1}{p_{i} m}\right) \\
& =(\log e) \sum_{i: p_{i}>0} p_{i} \ln \left(\frac{1}{p_{i} m}\right) \\
& \ln (x) \leq x-1 \\
& (\log e) \sum_{i: p_{i}>0} p_{i}\left(\frac{1}{p_{i} m}-1\right) \\
& =(\log e) \sum_{i: p_{i}>0}\left(\frac{1}{m}-p_{i}\right)=0
\end{aligned}
$$

As $\ln (x)=x-1$ only holds for $x=1$ it follows that equality holds iff $p_{i}=1 / m$, $i=1, \ldots, m$. In particular, as $p_{i}=\frac{1}{m}$, it follows $p_{i}>0, i=1, \ldots, m$.
c) Define for $i=1, \ldots, m$ and $j=1, \ldots, d$

$$
p_{i \mid j}=P\left(X=x_{i} \mid Y=y_{j}\right) .
$$

Show $H(X \mid Y)-H(X) \leq 0$ which is equivalent to the claim.

$$
\begin{aligned}
H(X \mid Y)-H(X) & =-\sum_{i, j} p_{i, j} \log \left(p_{i \mid j}\right)+\sum_{i} p_{i} \log \left(p_{i}\right) \\
& =-\sum_{i, j} p_{i, j} \log \left(\frac{p_{i, j}}{p_{j}}\right)+\sum_{i} \underbrace{\sum_{j} p_{i, j}}_{=p_{i}} \log \left(p_{i}\right) \\
& =(\log e) \sum_{i, j: p_{i, j}>0} p_{i, j} \ln \left(\frac{p_{i} p_{j}}{p_{i, j}}\right) \\
& \stackrel{\ln (x) \leq x-1}{\leq}(\log e) \sum_{i, j: p_{i, j}>0} p_{i, j}\left(\frac{p_{i} p_{j}}{p_{i, j}}-1\right) \\
& =(\log e) \sum_{i, j: p_{i, j}>0}\left(p_{i} p_{j}-p_{i, j}\right)=0
\end{aligned}
$$

Note that from $p_{i, j}>0$ it follows $p_{i}, p_{j}>0$. Equality hold for $p_{i} p_{j}=p_{i, j}$ which is equivalent to X and Y being stochastically independent.
This means that the mutual information $I(X, Y)=H(X)-H(X \mid Y)$ is nonnegative.
d) It holds

$$
\begin{aligned}
H(X, Y) & =-\sum_{i, j} p_{i, j} \log \left(p_{i, j}\right) \\
& =-\sum_{i, j} p_{i, j}\left[\log \left(p_{i, j}\right)-\log \left(p_{i}\right)+\log \left(p_{i}\right)\right] \\
& =-\sum_{i, j} p_{i, j} \log \underbrace{\left(\frac{p_{i, j}}{p_{i}}\right)}_{p_{j \mid i}}-\sum_{i} \underbrace{\sum_{j} p_{i, j}}_{=p_{i}} \log \left(p_{i}\right) \\
& =H(Y \mid X)+H(X) .
\end{aligned}
$$

e) It holds

$$
H(X, Y) \stackrel{(d)}{=} H(X)+H(Y \mid X) \stackrel{(c)}{\leq} H(X)+H(Y)
$$

with equality as in (c) iff X and Y are stochastically independent.

Solution of Problem 2

Recall: $H(X)=-\sum_{i} p_{i} \log \left(p_{i}\right)$.
a) $H(\hat{M})=-\frac{1}{4} \log _{2}\left(\frac{1}{4}\right)-\frac{3}{4} \log _{2}\left(\frac{3}{4}\right)=\frac{1}{2}+\frac{3}{2}-\frac{3}{4} \log _{2}(3) \approx 0.811$ $H(\hat{K})=-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)-2 \frac{1}{4} \log _{2}\left(\frac{1}{4}\right)=\frac{1}{2}+1=1.5$

c	K_{1}	K_{2}	K_{3}	
a	1	2	3	$\frac{1}{4}$
b	2	3	4	$\frac{3}{4}$
	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	1

$$
\begin{aligned}
& P(\hat{C}=1)=P(\hat{M}=a) \cdot P\left(\hat{K}=K_{1}\right)=\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{8} \\
& P(\hat{C}=2)=P(\hat{M}=a) \cdot P\left(\hat{K}=K_{2}\right)+P(\hat{M}=b) \cdot P\left(\hat{K}=K_{1}\right)=\frac{1}{4} \cdot \frac{1}{4}+\frac{3}{4} \cdot \frac{1}{2}=\frac{7}{16} \\
& P(\hat{C}=4)=P(\hat{M}=b) \cdot P\left(\hat{K}=K_{3}\right)=\frac{3}{4} \cdot \frac{1}{4}=\frac{3}{16} \\
\Rightarrow & P(\hat{C}=3)=1-P(\hat{C}=1)-P(\hat{C}=2)-P(\hat{C}=4)=1-\frac{2}{16}-\frac{7}{16}-\frac{3}{16}=\frac{4}{16} \\
\Rightarrow & H(\hat{C})=-\frac{1}{8} \log _{2}\left(\frac{1}{8}\right)-\frac{7}{16} \log _{2}\left(\frac{7}{16}\right)-\frac{3}{16} \log _{2}\left(\frac{3}{16}\right)-\frac{1}{4} \log _{2}\left(\frac{1}{4}\right) \approx 1.850 \\
\Rightarrow & H(\hat{K} \mid \hat{C}){ }^{\text {Thmm. }} \stackrel{4}{=} H(\hat{M})+H(\hat{K})-H(\hat{C}) \approx 0.811+1.5-1.850=0.461
\end{aligned}
$$

b) Lem. 4.12 b) demands $\left|\mathcal{C}_{+}\right| \leq\left|\mathcal{K}_{+}\right|$for perfect secrecy.

But in this case, we get $4=\left|\mathcal{C}_{+}\right|>\left|\mathcal{K}_{+}\right|=3$ \&

Solution of Problem 3

Show for any function $f: X(\Omega) \times Y(\Omega) \rightarrow \mathbb{R}$, that $H(X, Y, f(X, Y))=H(X, Y)$.
By definition, we have:

$$
H(X, Y, Z=f(X, Y)) \stackrel{\text { Def. }}{=} \sum_{X, Y, Z} P(X=x, Y=y, Z=z) \log (P(X=x, Y=y, Z=z))
$$

With

$$
P(X=x, Y=y, Z=z)= \begin{cases}P(X=x, Y=y) & , \text { if } Z=f(X, Y) \\ 0 & , \text { if } Z \neq f(X, Y)\end{cases}
$$

it follows that

$$
H(X, Y, Z=f(X, Y))=\sum_{X, Y} P(X=x, Y=y) \log (P(X=x, Y=y))=H(X, Y) .
$$

Note: It holds $0 \cdot \log 0=0$.

Solution of Problem 4

a)

$$
H(M)=-\sum_{i} P\left(M_{i}\right) \log _{2} P\left(M_{i}\right)=-\left(\frac{1}{3} \log _{2} \frac{1}{3}+\frac{2}{3} \log _{2} \frac{2}{3}\right)
$$

b) (i) For each $M \in \mathcal{M}_{\mathcal{N}}, C \in \mathcal{C}_{\mathcal{N}}$ there exists exactly one $K \in \mathcal{K}_{\mathcal{N}}$ such that $e(M, K)=$ C, namely $K=\left(s_{1}, \ldots, s_{N}\right)$ with $s_{j}=\left(c_{j}-a_{j}\right) \bmod m$.
(ii) \tilde{K}_{N} is uniformly distributed over $\mathcal{K}_{\mathcal{N}}$, as

$$
\begin{aligned}
& \quad P\left(\tilde{K}_{N}=K\right)=P\left(\tilde{K}_{1}=s_{1}, \ldots, \tilde{K}_{N}=s_{N}\right)=\prod_{i=1}^{N} P\left(\tilde{K}_{i}=s_{i}\right)=\frac{1}{m^{N}}=\frac{1}{\left|\mathcal{K}_{\mathcal{N}}\right|} \\
& \forall K=\left(s_{1}, \ldots s_{N}\right)
\end{aligned}
$$

(iii) Disadvantage of Vernam Cipher: The main disadvantage of the Vernam Cipher is that: $\left|\mathcal{K}_{+}\right| \geq\left|\mathcal{M}_{+}\right|$(one needs at least as many keys as plaintexts) and these keys need to be communicated over a secure channel in advance.
c)

$$
H(C, M) \stackrel{\text { chain-rule }}{=} H(C)+H(M \mid C) \stackrel{\text { perf.sec. }}{=} H(C)+H(M)
$$

d) Due to the independence of X and Y we have $p_{Y}(y \mid x)=p_{Y}(y)$, and

$$
\tilde{H}(Y \mid X)=-\sum_{x} \sum_{y} p_{Y}(y) \log _{2} p_{Y}(y)=|\mathcal{X}| H(Y) \geq H(Y)
$$

