Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 6
 - Proposed Solution -

Friday, June 3, 2016

Solution of Problem 1

a) The bit error occurs in block $C_{i}, i>0$, with block size BS .

mode	M_{i}	max \#err	remark
ECB	$E_{K}^{-1}\left(C_{i}\right)$	BS	only block C_{i} is affected
CBC	$E_{K}^{-1}\left(C_{i}\right) \oplus C_{i-1}$	BS+1	C_{i} and one bit in C_{i+1}
OFB	$C_{i} \oplus Z_{i}$	1	one bit in C_{i}, as $Z_{0}=C_{0}, Z_{i}=E_{K}\left(Z_{i-1}\right)$
CFB	$C_{i} \oplus E_{k}\left(C_{i-1}\right)$	BS+1	C_{i} and one bit in C_{i+1}
CTR	$C_{i} \oplus E_{K}\left(Z_{i}\right)$	1	one bit in $C_{i}, Z_{0}=C_{0}, Z_{i}=Z_{i-1}+1$

b) If one bit of the ciphertext is lost or an additional one is inserted in block C_{i} at position j, all bits beginning with the following positions may be corrupt:

mode	block	position
ECB	i	1
CBC	i	1
OFB	i	j
CFB	i	j
CTR	i	j

In ECB and CBC, all bits of blocks C_{i}, C_{i+1} may be corrupt.
In OFB, CFB, CTR, all bits beginning at position j of block C_{i} may be corrupt.

Solution of Problem 2

$$
\left(\begin{array}{l}
r_{0} \tag{1}\\
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right)=\left(\begin{array}{cccc}
x & (x+1) & 1 & 1 \\
1 & x & (x+1) & 1 \\
1 & 1 & x & (x+1) \\
(x+1) & 1 & 1 & x
\end{array}\right) \cdot\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \in \mathbb{F}_{2^{8}}^{4}
$$

It is to show that:

$$
\begin{equation*}
\left(c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}\right)\left((x+1) u^{3}+u^{2}+u+x\right) \equiv \sum_{i=0}^{3} r_{i} u^{i} \quad\left(\bmod \left(u^{4}+1\right)\right) . \tag{2}
\end{equation*}
$$

We expand the multiplication on the left hand side of (2), reduce it modulo $u^{4}+1 \in \mathbb{F}_{2^{8}}[u]$, and use the abbreviations $\left(r_{0}, r_{1}, r_{2}, r_{3}\right)^{\prime}$ according to (1).

$$
\begin{aligned}
& \left(c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}\right)\left((x+1) u^{3}+u^{2}+u+x\right) \\
= & c_{3}(x+1) u^{6}+c_{3} u^{5}+c_{3} u^{4}+c_{3} x u^{3}+ \\
& c_{2}(x+1) u^{5}+c_{2} u^{4}+c_{2} u^{3}+c_{2} x u^{2}+ \\
& c_{1}(x+1) u^{4}+c_{1} u^{3}+c_{1} u^{2}+c_{1} x u+ \\
& c_{0}(x+1) u^{3}+c_{0} u^{2}+c_{0} u+c_{0} x \\
= & {\left[c_{3}(x+1)\right] u^{6}+\left[c_{3}+c_{2}(x+1)\right] u^{5}+\left[c_{3}+c_{2}+c_{1}(x+1)\right] u^{4} } \\
& +\left[c_{3} x+c_{2}+c_{1}+c_{0}(x+1)\right] u^{3}+\left[c_{2} x+c_{1}+c_{0}\right] u^{2}+\left[c_{1} x+c_{0}\right] u+c_{0} x .
\end{aligned}
$$

Now, we apply the modulo operation and merge terms:

$$
\begin{aligned}
& \equiv\left[c_{3} x+c_{2}+c_{1}+(x+1) c_{0}\right] u^{3}+\left[c_{3}(x+1)+c_{2} x+c_{1}+c_{0}\right] u^{2}+ \\
& \\
& {\left[c_{3}+c_{2}(x+1)+c_{1} x+c_{0}\right] u+\left[c_{3}+c_{2}+c_{1}(x+1)+c_{0} x\right]} \\
& \stackrel{(1)}{=} r_{3} u^{3}+r_{2} u^{2}+r_{1} u+r_{0} \equiv \sum_{i=0}^{3} r_{i} u^{i} \quad\left(\bmod \left(u^{4}+1\right)\right)
\end{aligned}
$$

Solution of Problem 3

The given AES-128 key is denoted in hexadecimal representation:

$$
K=(2 D 617269|65007661| 6 E 00436 C \mid 65656666)
$$

(a) The round key is $K_{0}=K=\left(W_{0} W_{1} W_{2} W_{3}\right)$ with $W_{0}=(2 D 617269)$, $W_{1}=$ (6500 76 61) , $W_{2}=(6 E 00436 C), W_{3}=(65656666)$.
(b) To calculate the first 4 bytes of round key K_{1} recall that $K_{1}=\left(W_{4} W_{5} W_{6} W_{7}\right)$. Follow Alg. 1 as given in the lecture notes to calculate W_{4} :

W_{0}	2	D	6	1	7	2	6	9
\oplus	tmp	4	C	3	3	3	3	4
D								
W_{0}	0010	1101	0110	0001	0111	0010	0110	1001
$\oplus \mathrm{tmp}$	0100	1100	0011	0011	0011	0011	0100	1101
W_{4}	0110	0001	0101	0010	0100	0001	0010	0100
W_{4}	6	1	5	2	4	1	2	4

```
Algorithm 1 AES key expansion (applied)
    for \(i \leftarrow 4 ; i<4 \cdot(r+1) ; i++\) do
        Initialize for-loop with \(i \leftarrow 4\). We have \(r=1\) for \(K_{1}\).
        \(\mathrm{tmp} \leftarrow W_{i-1}\)
        \(\mathrm{tmp} \leftarrow W_{3}=(65656666)\)
        if \((i \bmod 4=0)\) then
            result is true as \(i=4\).
            \(\operatorname{tmp} \leftarrow\) SubBytes \((\) RotByte \((\mathrm{tmp})) \oplus \operatorname{Rcon}(i / 4)\)
            Evaluate this operation step by step:
            RotByte \((\mathrm{tmp})=(65666665)\), i.e., a cyclic left shift of one byte
            To compute SubBytes (65 6666 65) evaluate Table 5.8 for each byte:
            (row 6, col 5) provides \(77_{10}=4 D_{16}\)
            (row 6 , col 6 ) provides \(51_{10}=33_{16}\)
            Note that the indexation of rows and columns starts with zero.
            SubBytes \((65666665)=(4 D 33334 D)\)
            \(i / 4=1\)
            \(\operatorname{Rcon}(1)=(\operatorname{RC}(1) 000000)\), with \(\operatorname{RC}(1)=x^{1-1}=x^{0}=1 \in \mathbb{F}_{2^{8}}\).
            \(\mathrm{tmp} \leftarrow(4 D 33334 D) \oplus(01000000)=(4 C 33334 D)\)
        end if
        \(W_{i} \leftarrow W_{i-4} \oplus \operatorname{tmp} W_{4} \leftarrow W_{0} \oplus \mathrm{tmp}\). Then, next iteration, \(i \leftarrow 5 \ldots\)
    end for
```


Solution of Problem 4

The following procedure relies on a brute-force attack to obtain the keys K_{1} and K_{2} :

1. Fix m and compute $c=E_{K_{1}}\left(E_{K_{2}}\left(E_{K_{2}}(m)\right)\right)$, i.e., perform a chosen-plaintext attack.
2. Generate a list of encrypted ciphertexts $E_{k}\left(E_{k}(m)\right)$ for the fixed m, where k runs through all possible keys.
3. Generate another list of deciphered plaintexts $D_{k^{\prime}}(c)$ for the fixed c, where k^{\prime} runs through all possible keys.
4. A match between the two lists is a pair of keys $\left(k, k^{\prime}\right)$ with $E_{k^{\prime}}\left(E_{k}\left(E_{k}(m)\right)\right)=c$. There should only be a small number of such pairs.

For each pair $\left(k, k^{\prime}\right)$, choose another plaintext m^{\prime} and check if it produces the corresponding ciphertext c^{\prime}. This should eliminate most of the incorrect pairs. Repeating this procedure a few times should yield the correct pair $\left(k, k^{\prime}\right)=\left(K_{1}, K_{2}\right)$ with increasing probability.

