Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 7
 - Proposed Solution -

Friday, June 10, 2016

Solution of Problem 1

Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ the Euler φ-function, i.e., $\varphi(n)=\left|\mathbb{Z}_{n}^{*}\right|$ with $\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}$.
a) Let $n=p$ be prime. It follows for the multiplicative group that:

$$
\mathbb{Z}_{p}^{*}=\left\{a \in \mathbb{Z}_{p} \mid \operatorname{gcd}(a, p)=1\right\}=\{1,2, \ldots, p-1\} \Rightarrow \varphi(p)=p-1 .
$$

b) The power p^{k} has only one prime factor. So p^{k} has a common divisors that are not equal to one: These are only the multiples of p. For $1 \leq a \leq p^{k}$:

$$
1 \cdot p, \quad 2 \cdot p, \quad \ldots, \quad p^{k-1} \cdot p=p^{k} .
$$

And it follows that

$$
\varphi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k-1}(p-1) .
$$

c) Let $n=p q$ for two primes $p \neq q$. It holds for $1 \leq a<p q$

1) $p|a \vee q| a \Rightarrow \operatorname{gcd}(a, p q)>1$, and
2) $p \nmid a \wedge q \nmid a \Rightarrow \operatorname{gcd}(a, p q)=1$.

It follows $\mathbb{Z}_{p q}^{*}=\underbrace{\{1 \leq a \leq p q-1\}}_{p q-1 \text { elements }} \backslash \underbrace{\{1 \leq a \leq p q-1|p| a\}}_{q-1 \text { elements }} \dot{\cup} \underbrace{\{1 \leq a \leq p q-1|q| a\}}_{p-1 \text { elements }}]$.
Hence: $\varphi(p q)=(p q-1)-(q-1)-(p-1)=p q-p-q+1=(p-1)(q-1)=\varphi(p) \varphi(q)$.
d) Apply the Euler phi-function on n with the following steps:

1. Factorize all prime factors of the given n
2. Apply the rules in a) to c), correspondingly.

$$
\begin{aligned}
& \varphi(4913)=\varphi\left(17^{3}\right) \stackrel{(\mathrm{b})}{=} 17^{2}(17-1)=4624, \text { and } \\
& \varphi(899)=\varphi\left(30^{2}-1^{2}\right)=\varphi((30-1)(30+1))=\varphi(29 \cdot 31) \stackrel{(\mathrm{c})}{=} 28 \cdot 30=840 .
\end{aligned}
$$

Solution of Problem 2

Let $n \in \mathbb{N}, a \in \mathbb{Z}_{n}^{*}$ with $\mathbb{Z}_{n}^{*}=\left\{b \in \mathbb{Z}_{n} \mid \operatorname{gcd}(b, n)=1\right\}$.
Consider the map $\Psi: \mathbb{Z}_{n}^{*} \rightarrow \mathbb{Z}_{n}^{*}$ defined by $\Psi(x)=a x \bmod n$, with $x \in \mathbb{Z}_{n}^{*}$.

1) Show that Ψ is well-defined, i.e., $\forall x \in \mathbb{Z}_{n}^{*} \Rightarrow a x \in \mathbb{Z}_{n}^{*}$.
\mathbb{Z}_{n}^{*} is a multiplicative group, i.e., $\forall x \in \mathbb{Z}_{n}^{*}, \forall a \in \mathbb{Z}_{n}^{*} \Rightarrow(a x) \in \mathbb{Z}_{n}^{*}$.
2) Show that Ψ is surjective, i.e., $\forall y \in \mathbb{Z}_{n}^{*} \exists x \in \mathbb{Z}_{n}^{*}: \Psi(x)=y$.
$y \equiv a x(\bmod n) \Rightarrow a^{-1} y \equiv x(\bmod n) \Rightarrow \Psi\left(a^{-1} y\right) \equiv y(\bmod n)$.
Since $\operatorname{gcd}(a, n)=1$ holds for all $a \Rightarrow \exists a^{-1}(\bmod n)$.
3) Show that $\Psi(x)$ is injective, i.e., for $x \not \equiv y \Rightarrow \Psi(x) \not \equiv \Psi(y)$.

Indirect proof:
Let $a x \equiv a y(\bmod n)$. Since $\operatorname{gcd}(a, n)=1 \Rightarrow \exists a^{-1} \in \mathbb{Z}_{n}^{*}: x \equiv y(\bmod n)$.
4) From 2) and 3) $\Rightarrow \Psi(x)$ is bijective.
5) Show that the inverse $a^{-1}(\bmod n)$ is unique.

Indirect proof:
Let $u \not \equiv v \in \mathbb{Z}_{n}^{*}$ be inverses of a, i.e., $u a \equiv 1(\bmod n)$ and $v a \equiv 1(\bmod n)$ holds.
But $u \equiv u(v a) \equiv(u a) v \equiv v(\bmod n)$ is a contradiction \Rightarrow the inverse is unique.
$\Rightarrow \forall a \in \mathbb{Z}_{n}^{*} \exists!a^{-1}$.
6) Show that $a^{\varphi(n)} \equiv 1(\bmod n)$:

$$
\begin{aligned}
1 & \equiv \underbrace{\left(\prod_{x \in \mathbb{Z}_{n}^{*}} x\right)\left(\prod_{x \in \mathbb{Z}_{n}^{*}} x^{-1}\right) \equiv \underbrace{\left(\prod_{x \in \mathbb{Z}_{n}^{*}} \Psi(x)\right)}_{4) \text { bijective fct. }}\left(\prod_{x \in \mathbb{Z}_{n}^{*}} x^{-1}\right) \equiv\left(\prod_{x \in \mathbb{Z}_{n}^{*}} a x\right)\left(\prod_{x \in \mathbb{Z}_{n}^{*}} x^{-1}\right)}_{5) \text { pairs of unique inverses }} \\
& \equiv a^{\varphi(n)}\left(\prod_{x \in \mathbb{Z}_{n}^{*}} x\right)\left(\prod_{x \in \mathbb{Z}_{n}^{*}} x^{-1}\right) \equiv a^{\varphi(n)} \quad(\bmod n) .
\end{aligned}
$$

Solution of Problem 3

a) " \Rightarrow " Let n with $n>1$ be prime. Then, each factor m of $(n-1)$! is in the multiplicative group \mathbb{Z}_{n}^{*}. Each factor m has a multiplicative inverse modulo n. The factors 1 and $n-1$ are obviously inverse to themselves. The factorial multiplies all these factors. The entire product must be 1 since all pairs of inverses yield 1 .

$$
(n-1)!\equiv \prod_{i=1}^{n-1} i \equiv \underbrace{(n-1)}_{\text {self-inv. }} \underbrace{(n-2) \cdot \ldots \cdot 3 \cdot 2}_{\text {pairs of inv. } \equiv 1} \cdot \underbrace{1}_{\text {self-inv. }} \equiv(n-1) \equiv-1 \quad \bmod n
$$

$" \Leftarrow "$ Let $n=a b$ and hence composite with $a, b \neq 1$ prime. Thus $a \mid n$ and $a \mid(n-1)!$. From $(n-1)!\equiv-1 \Rightarrow(n-1)!+1 \equiv 0$, we obtain $a|((n-1)!+1) \Rightarrow a| 1 \Rightarrow a=1 \Rightarrow n$ must be prime. \&
b) Compute the factorial of 28 :

$$
\begin{aligned}
& 28!=\overbrace{(28 \cdot 27)}^{2} \cdot \overbrace{(26 \cdot 25)}^{12} \cdot \overbrace{(24 \cdot 23)}^{1} \cdot \overbrace{(22 \cdot 21)}^{27} \cdot \overbrace{(20 \cdot 19)}^{3} \cdot \overbrace{(18 \cdot 17)}^{16} \\
& \underbrace{(16 \cdot 15)}_{8} \cdot \underbrace{(14 \cdot 13)}_{8} \cdot \underbrace{(12 \cdot 11)}_{16} \cdot \underbrace{(10 \cdot 9 \cdot 8)}_{24} \cdot \underbrace{(7 \cdot 6 \cdot 5 \cdot 4)}_{28} \cdot \underbrace{(3 \cdot 2)}_{6} \\
&=\underbrace{(2 \cdot 12 \cdot 1 \cdot 27 \cdot 3)}_{1} \cdot \underbrace{(16 \cdot 8 \cdot 8 \cdot 16)}_{-1} \cdot \underbrace{(24 \cdot 28 \cdot 6)}_{1} \equiv-1 \bmod 29
\end{aligned}
$$

Thus, 29 is prime as shown by Wilson's primality criterion.
c) Using this criterion is computationally inefficient, since computing the factorial is very time-consuming.

