Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon
Exercise 8

- Proposed Solution -

Friday, June 17, 2016

Solution of Problem 1

Proof by contradiction:
Assume there is only a finite number of n primes $p_{1}, p_{2}, \ldots, p_{n}$ (sorted in an ascending list). This implies that all other integers (except the p_{i}) greater than one are supposed to be composite by assumption.

Construct a number composed of the product of all primes plus one:

$$
\begin{equation*}
P=\prod_{i=1}^{n} p_{i}+1 \tag{1}
\end{equation*}
$$

$P>p_{n}$ and assumed to be composite. As P is composite, it must have at least one prime factor p with $p>1$ so that $p \mid P$. As p is assumed to be prime, it holds $p \mid \prod_{i=1}^{n} p_{i}$.
Let us reformulate the above equation (1) to:

$$
\begin{equation*}
P-\prod_{i=1}^{n} p_{i}=1 \tag{2}
\end{equation*}
$$

Since both $p \mid P$ and $p \mid \prod_{i=1}^{n} p_{i}$ holds, we obtain $p \mid\left(P-\prod_{i=1}^{n} p_{i}\right)$. However, $P-\prod_{i=1}^{n} p_{i}=1$. It is obvious that no $p>1$ divides 1 .
As a result there is at least one other prime $p=p_{n+1}$ greater than p_{n}. By induction this continues for $n \rightarrow n+1$, so that there are infinitely many primes.

Solution of Problem 2

a) Define event A : ' n composite' $\Leftrightarrow \bar{A}$: ' n prime'.

Define event $B: m$-fold MRPT provides ' n prime' in all m cases.
From hint: $\operatorname{Prob}(\bar{A})=\frac{2}{\ln (N)} \Rightarrow \operatorname{Prob}(A)=1-\frac{2}{\ln (N)}($ cf. Thm. 6.7)
Probability for the case that the MRPT fails for m times:

$$
\operatorname{Prob}(B \mid A) \leq\left(\frac{1}{4}\right)^{m}
$$

Probability of the MRPT verifying an actual prime is:

$$
\operatorname{Prob}(B \mid \bar{A})=1
$$

Probability of the MRPT wrongly verifying a composite n as prime after m tests is:

$$
\begin{aligned}
p & =\operatorname{Prob}(A \mid B) \\
& =\frac{\operatorname{Prob}(B \mid A) \cdot \operatorname{Prob}(A)}{\operatorname{Prob}(B)} \\
& =\frac{\operatorname{Prob}(B \mid A) \cdot \operatorname{Prob}(A)}{\operatorname{Prob}(B \mid A) \cdot \operatorname{Prob}(A)+\operatorname{Prob}(B \mid \bar{A}) \cdot \operatorname{Prob}(\bar{A})} \\
& \leq \frac{\left(\frac{1}{4}\right)^{m}\left(1-\frac{2}{\ln (N)}\right)}{\left(\frac{1}{4}\right)^{m}\left(1-\frac{2}{\ln (N)}\right)+1 \cdot \frac{2}{\ln (N)}} \\
& =\frac{\ln (N)-2}{\ln (N)-2+2^{2 m+1}}
\end{aligned}
$$

b) Note that the above function $f(x)=\frac{x}{x+a}$ is monotonically increasing for $x \in \mathbb{R}, a>0$, as its derivative is $f^{\prime}(x)=\frac{a}{(x+a)^{2}}>0$. Let $x=\ln (N)-2$, and $N=2^{512}$. Resolve the inequality w.r.t. m :

$$
\begin{aligned}
\frac{x}{x+2^{2 m+1}} & <\frac{1}{1000} \\
\Leftrightarrow 2^{2 m+1} & >999 x \\
\quad \Leftrightarrow m & >\frac{1}{2}\left(\log _{2}(999 x)-1\right) \\
\Leftrightarrow m & >\frac{1}{2}\left(\log _{2}(999(512 \ln (2)-2))-1\right) \\
\Leftrightarrow m & >8.714 .
\end{aligned}
$$

$m=9$ repetitions are needed to ensure that the error probability stays below $p=\frac{1}{1000}$ for $N=2^{512}$.

Solution of Problem 3

a) Let n be odd and composite. The problem is modelled by a geometric distributed random variable X with:

- Probability of a single test stating ' n is prime' although n is composite is $p(\Rightarrow 1-p$ for ' n is composite')
- Probability that after exactly $M \in \mathbb{N}$ tests, it correctly states ' p is composite':

$$
\operatorname{Prob}(X=M)=p^{M-1}(1-p)
$$

b) The expected value of a geometrically distributed random variable is:

$$
\mathrm{E}(X)=\sum_{M=1}^{\infty} M p^{M-1}(1-p)=(1-p) \frac{p}{(1-p)^{2}}=\frac{p}{1-p},
$$

Note that with the geometric series $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$, we can compute its derivative w.r.t. x, and obtain $\sum_{n=1}^{\infty} n x^{n-1}=\frac{x}{(1-x)^{2}}$, for $|x|<1$.
For the given parameter $p=\frac{1}{4}$, the expected value for the number of tests stating that a composite n is indeed composite is:

$$
\mathrm{E}(X)=\frac{p}{1-p}=\frac{1 / 4}{1-1 / 4}=\frac{1 / 4}{3 / 4}=\frac{1}{3}
$$

Solution of Problem 4

a) By the Miller-Rabin Primality Test it will be proven that 341 is composite.

Write $n=341=1+85 \cdot 2^{2}=1+q \cdot 2^{k}$.

```
Algorithm 1 Miller-Rabin Primality Test (MRPT)
    Write \(n=1+q 2^{k}, q\) odd
    Choose \(a \in\{2, \ldots, n-1\}\) uniformly distributed at random
    \(y \leftarrow a^{q} \bmod n\)
    if \((y=1)\) OR \((y=n-1)\) then
        return " \(n\) prime"
    end if
    for \((i \leftarrow 1 ; i<k ; i+)\) do
        \(y \leftarrow y^{2} \bmod n\)
        if \((y=n-1)\) then
            return " \(n\) prime"
        end if
    end for
    return " \(n\) composite"
```

Choose $a=2$.
Calculate $a^{q} \bmod n$, i.e., $2^{85} \bmod 341$.
Note that $2^{10}=1024=3 \cdot 341+1 \equiv 1 \bmod 341$.
It follows $2^{85}=(\underbrace{2^{10}}_{\equiv 1})^{8} \cdot \underbrace{2^{5}}_{=32} \equiv 32 \bmod 341$.
Alternatively, $2^{85} \bmod 341$ is calculated by Square and Multiply, see below. As $y=$ $32 \notin\{1, n-1\}$ the for-loop starts with $i=1$.
$y^{2}=32^{2}=\left(2^{5}\right)^{2}=2^{10} \equiv 1 \bmod 341$, see above.
Furthermore, $y=1 \neq 340 \bmod 341$.
As $i=2=k=2$ the for-loop terminates and n is stated as composite, which is a reliable result.
b) A number n is decomposed according to MRPT as $n=1+q 2^{k}$. It follows that MRPT has at most k squarings. The worst case occurs, if $q=1$, then $n=1+2^{k} \Leftrightarrow k=\log _{2}(n-1)$. With n having 300 digits it follows: $n<10^{301}=(\underbrace{10^{3}}_{<2^{10}})^{100} \cdot \underbrace{10}_{<2^{4}}<2^{1004} \Rightarrow k \leq 1004$.
Consequently, less than 1004 squarings are needed. ($k \approx 999.9$)
Note, evaluating $a^{q} \bmod n$ with Square and Multiply takes t squarings. But as $2^{t} \leq q$ holds, the worst case is reached, for equality which means $t=0$, i.e., $q=1$, as otherwise q would be not odd.

Determining $2^{85} \bmod 341$ by Square and Multiply.
It holds $a=2, x=85=(1010101)_{2}$, i.e., $t=6$.
The following tabular denotes the evaluation of the Square and Multiply algorithm. The table is initialized in the first line with $i=t=6$ and $y=1$. There are $t+1$ lines numbered from t down to 0 . The binary representation of $x=\left(x_{t} \ldots \ldots x_{0}\right)$ is given in column two. Using those values the columns four and five are evaluated row by row. For each row the y value is taken from the last column of the row above. The final value in the fifth column is the result of a^{x} $\bmod n$.

```
Algorithm 2 Square and multiply
Require: \(x=\left(x_{t}, \ldots, x_{0}\right) \in \mathbb{N}, a \in \mathbb{N}\)
Ensure: \(a^{x} \bmod n\)
    \(y \leftarrow a\)
    for \((i=t-1, i \geq 0, i--)\) do
        \(y \leftarrow y^{2} \bmod n\)
        if \(\left(x_{i}=1\right)\) then
            \(y \leftarrow y \cdot a \bmod n\)
        end if
    end for
    return \(y\)
```

i	x_{i}	y	$y^{2} \bmod n$	$y^{2}\left(1+x_{i} \cdot(a-1)\right)$	$\bmod n$
6	1	1	1	2	
5	0	2	4	4	
4	1	4	16	32	
3	0	32	$1024 \equiv 1 \bmod 341$	1	
2	1	1	1	2	
1	0	2	4	4	
0	1	4	16	32	

The solution is $2^{85} \equiv 32 \bmod 341$.

