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Solution of Problem 1
Chinese Remainder Theorem:
Let m1, . . . , mr be pair-wise relatively prime, i.e., gcd(mi, mj) = 1 for all i 6= j ∈ {1, . . . , r},
and furthermore let a1, . . . , ar ∈ N. Then, the system of congruences

x ≡ ai (mod mi), i = 1, . . . , r,

has a unique solution modulo M =
r∏

i=1
mi given by

x ≡
r∑

i=1
aiMiyi (mod M), (1)

where Mi = M
mi

, yi = M−1
i (mod mi), for i = 1, . . . , r.

a) Show that (1) is a valid solution for the system of congruences:
Let i 6= j ∈ {1, . . . , r}. Since mj |Mi holds for all i 6= j, it follows:

Mi ≡ 0 (mod mj). (2)

Furthermore, we have yjMj ≡ 1 (mod mj).
Note that from coprime factors of M , we obtain:

gcd(Mj, mj) = 1⇒ ∃ yj ≡M−1
j (mod mj), (3)

and the solution of (1) modulo a corresponding mj can be simplified to:

x ≡
r∑

i=1
aiMiyi

(2)
≡ ajMjyj

(3)
≡ aj (mod mj).

b) Show that the given solution is unique for the system of congruences:
Assume that two different solutions y, z exist:

y ≡ ai (mod mi) ∧ z ≡ ai (mod mi), i = 1, . . . , r,

⇒ 0 ≡ (y − z) (mod mi)
⇒ mi | (y − z)
⇒M | (y − z), as m1, . . . , mr are relatively prime for i = 1, . . . , r,

⇒ y ≡ z (mod M).

This is a contradiction, therefore the solution is unique.



Solution of Problem 2

”⇒” We will show that for n ∈M , there exists a primitive element in each case.

1) n = 2. This case is trivial since n is a known prime and the only element in the
group {1} is also the primitive element.

2) n = 4 = 22. In this case Z∗
4 = {1, 3} and 3 is the only primitive element.

3) n = p. Zp is a field and Zp = Z∗
p is a cyclic group since p is prime. Thus a primitive

element exists.
4) n = pk. We will show by induction, that for each odd prime p, there exists a

primitive element modulo p, so that it holds for all k > 1:

Claim 1: gϕ(pk−1) 6≡ 1 mod pk

For k = 2, we consider a primitive element g0 modulo p. It holds:

(g0 + p)p−1 ≡ gp−1
0 + (p− 1)pgp−2

0 ≡ gp−1
0 − pgp−2

0 mod p2

With g0, also g0 + p is a primitive element modulo p. Since pgp−2
0 6≡ 0 mod p2 it

follows (g0 + p)p−1 6≡ gp−1
0 mod p2. At most one of these numbers is kongruent

to 1. We choose g ∈ {g0, g0 + p} with gp−1 6≡ 1 mod p2 and have already proven
the case k = 2 for Claim 1.
Next, we assume that gϕ(pk−1) 6≡ 1 mod pk holds in general and proof Claim 1 by
induction for k + 1. By Euler-Fermat it holds gϕ(pk−1) ≡ 1 mod pk−1. Hence there
exists a t ∈ Z with gϕ(pk−1) ≡ 1 + tpk−1. By the induction basis it holds p - t. It
follows:

gϕ(pk) ≡ gϕ(pk−1)p ≡ (1 + tpk−1)p ≡ 1 + tpk +
(

p

2

)
t2p2k−2 ≡ 1 + tpk 6≡ 1 mod pk+1

and hence Claim 1 is proven by induction.
Next, we show that the chosen g is a primitive element modulo pk. Let e = ordpk(g).
From ge ≡ 1 mod pk, if follows ge ≡ 1 mod p and thus p− 1|e. As e divides the
group order of Z∗

pk by Lagrange’s Theorem, it follows that e|ϕ(pk) = (p− 1)pk−1.
There exists a t ≤ k with e = ϕ(pt) = (p− 1)pt−1. Due to the choice of g it follows
t = k. Otherwise it would hold:

gϕ(pt) ≡ 1 mod pt+1

Hence e = ϕ(pk) and it follows that Z∗
pk is a cyclic group.

5) n = 2pk. To show that Z∗
2pk is cyclic, we choose a primitive element modulo pk

for g0. Let g be the odd number in the set {g0, g0 + pk}. We show that g is
a primitive element modulo 2pk (note that the even number modulo 2pk is not
invertible). It holds ϕ(2pk) = ϕ(2)ϕ(pk) = ϕ(pk). With e = ord2pk(g) it follows
e | ϕ(2pk) = ϕ(pk). Otherwise, g is a primitive element modulo pk so that e ≥ ϕ(pk)
follows. Hence e = ϕ(pk) = ϕ(2pk) and Z∗

2pk is a cyclic group. �

”⇐” We will show that for any n 6∈M it follows that Z∗
n is not a cyclic group. If an abelian

group has more than one element of order 2, it can not be cyclic. Elements of order 2



are those square roots of 1 that differ from 1. If n has the prime factorization ∏i pki
i , it

holds:
r2 ≡ 1 mod n↔ ∀i : r2 ≡ 1 mod pki

i

The congruence r2 ≡ 1 mod pki
i has for pki

i = 2 exactly one and otherwise at least two
solutions. With the Chinese Remainder Theorem it follows, that if at least two pki

i > 2,
then at least four solutions (at least three elements are of order 2. Thus the assumption
follows for all n 6∈ M that are not potences of 2. If n = 2k with k > 2, we show by
induction over k that:

Claim 2: ∀a ∈ Z∗
n : aϕ(2k)/2 ≡ 1 mod 2k

It follows that there is no element of order ϕ(n) and thus Z∗
n is not cyclic. It holds

ϕ(2k)/2 = 2k−1/2 = 2k−2. For k = 3, we obtain n = 8 and ϕ(n)/2 = 2. It is easily
computed that 12 ≡ 32 ≡ 52 ≡ 72 mod 8 is true. The induction basis a2k−2 ≡ 1 mod 2k

provides a2k−2 = 1 + t2k for some t. This yields:

aϕ(2k+1)/2 ≡ a2k−1 ≡
(
a2k−2)2

≡ (1 + t2k)2 ≡ 1 + t2k+1 + t222k ≡ 1 mod 2k+1

and hence Claim 2 is proven by induction.

Solution of Problem 3

a) The task is to compute x = log3 y with x ∈ Z∗
79 and y either 18 or 1.

• We solve x = log3 18 by an exhaustive search.

x 3x mod 79
0 1
1 3
2 9
3 27
4 81 ≡ 2
6 729 ≡ 18

⇒ log3 18 ≡ 6 mod 79

• We want to solve x = log3 18. From Theorem 6.2 (Euler, Fermat) we know that:

ap−1 ≡ 1 mod 79

⇒ log3 1 = p− 1 = 78 mod 79

b) For trivial cases, ϕ(n) or ϕ(n)/2 are the solutions. In other cases, the worst case, it
would be 76 tryings. Multiplication of large numbers is computationally complex. No
efficient algorithm for the calculation of the discrete logarithm is known.


