

Univ.-Prof. Dr. rer. nat. Rudolf Mathar

Solution for Written Examination Advanced Methods of Cryptography

Tuesday, August 18, 2015, 08:30 a.m.

Please pay attention to the following:

- 1) The exam consists of **4 problems**. Please check the completeness of your copy. **Only** written solutions on these sheets will be considered. Removing the staples is **not** allowed.
- 2) The exam is passed with at least 35 points.
- **3)** You are free in choosing the order of working on the problems. Your solution shall clearly show the approach and intermediate arguments.
- 4) Admitted materials: The sheets handed out with the exam and a non-programmable calculator.
- 5) The results will be published on Monday, the 24.08.15, 16:00h, on the homepage of the institute.

The corrected exams can be inspected on Tuesday, 25.08.15, 10:00h. at the seminar room 333 of the Chair for Theoretical Information Technology, Kopernikusstr. 16.

(19 points)

i	Character	k_i	i	Character	k_i
0	А	3	13	Ν	3
1	В	0	14	Ο	1
2	С	2	15	Р	0
3	D	0	16	Q	0
4	Е	2	17	R	0
5	F	1	18	S	2
6	G	3	19	Т	3
7	Н	1	20	U	0
8	Ι	7	21	V	0
9	J	0	22	W	0
10	K	1	23	Х	0
11	L	5	24	Y	0
12	М	1	25	Ζ	0

a) The Index of Coincidence is calculated using a frequency analysis: (1P)

The total number of characters in the ciphertext is N = 35. Therefore, the Index of Coincidence is calculated with the frequencies k_i as:

$$I_{\mathbf{c}} = \sum_{i=1}^{26} \frac{k_i(k_i - 1)}{n(n-1)} = \frac{7 \cdot 6 + 5 \cdot 4 + 4(3 \cdot 2) + 3(2 \cdot 1)}{35 \cdot 34} = \frac{92}{1190} \approx 0.0773 \quad (\mathbf{2P})$$

It is known that for an English text: $K_E = 0.066895 \Longrightarrow I_c \approx K_E$. The Friedman Test states that the ciphertext is monoalphabetic (and probably an English text). (1P)

- b) Since the frequencies of the letters in the plaintext and the ciphertext are the same, we can assume that a permutation cipher has been used. (1P)
- c) First apply the given encryption function to $c = (c_1, c_2, ..., c_{35})$, e.g.,

$$c_{1} = c_{(1-1)\cdot5+1} = m_{(1-1)\cdot7+k_{1}}$$

$$c_{2} = c_{(1-1)\cdot5+2} = m_{(2-1)\cdot7+k_{1}}$$

$$c_{3} = c_{(1-1)\cdot5+3} = m_{(3-1)\cdot7+k_{1}}$$

$$\vdots$$

$$c_{6} = c_{(2-1)\cdot5+1} = m_{(1-1)\cdot7+k_{2}}$$

$$c_{7} = c_{(2-1)\cdot5+2} = m_{(2-1)\cdot7+k_{2}}$$

$$\vdots$$

$$c_{35} = c_{(7-1)\cdot5+5} = m_{(5-1)\cdot7+k_{7}}$$

Thus, the ciphertext symbols of the first block of v = 5 symbols are each multiples of b = 7 in the plaintext. Thus, the 5 symbols IAEGO have same offset k_1 per block of 7 symbols in the plaintext. The secret keys are the corresponding offsets: $k_1 = 2, k_2 = 1, k_3 = 5, k_4 = 7, k_5 = 6, k_6 = 4, k_7 = 3.$ (4P) Alternative solution:

The permutation applied to the ciphertext yields the following matrix structure with the permutation keys on the bottom:

$$\begin{pmatrix} L & I & K & E & A & L & L \\ M & A & G & N & I & F & I \\ C & E & N & T & T & H & I \\ N & G & S & I & T & I & S \\ L & O & G & I & C & A & L \\ \hline 2 & 1 & 5 & 7 & 6 & 4 & 3 \end{pmatrix}$$

The ciphertext is read row-wise and the keys are the offsets from left (cf. above).

d) For an alphabet size of 2, i.e., $\mathcal{A} = \{0, 1\}$, we use the following scheme:

```
      01
      01
      01
      01
      01
      01
      01

      00
      11
      00
      11
      00
      11
      00
      11

      00
      00
      11
      11
      00
      00
      11
      11

      00
      00
      00
      00
      11
      11
      11
      11
```

With these chosen plaintexts, all bit positions are encoded by exactly one of the sixteen unique codewords, namely, 0000, 1000, 1100, ..., 1111. (3P)

- e) Minimal number of chosen messages is $\lceil \log_a(l) \rceil$. (2P)
- f) Applying the n encryption functions successively results in:

$$c_{1} \equiv a_{1}m + b_{1} \mod q$$

$$c_{2} \equiv a_{2}c_{1} + b_{2} \equiv a_{2}(a_{1}m + b_{1}) + b_{2}$$

$$\equiv a_{2}a_{1}m + a_{2}b_{1} + b_{2} \mod q$$

$$c_{3} \equiv a_{3}c_{2} + b_{3}$$

$$\equiv a_{3}(a_{2}a_{1}m + a_{2}b_{1} + b_{2}) + b_{3}$$

$$\equiv a_{3}a_{2}a_{1}m + a_{3}a_{2}b_{1} + a_{3}b_{2} + b_{3} \mod q$$

$$\vdots$$

$$c_{n} \equiv \prod_{i=1}^{n} a_{i}m + \sum_{i=1}^{n-1} b_{i}(\prod_{j=i+1}^{n-1} a_{j}) + b_{n} \mod q$$

$$\equiv \prod_{i=1}^{n} a_{i}m + \sum_{i=1}^{n} b_{i}(\prod_{j=i+1}^{n} a_{j}) \mod q \quad (\mathbf{3P})$$

using the definition of the empty product in the last step. Note: A mathematical proof would involve the induction $n \to n+1$:

$$c_{n+1} \equiv \prod_{i=1}^{n+1} a_i m + \sum_{i=1}^{n+1} b_i \prod_{j=i+1}^{n+1} a_j$$

$$\equiv a_{n+1} \prod_{i=1}^n a_i m + a_{n+1} \sum_{i=1}^n b_i \prod_{j=i+1}^n a_j + b_{n+1}$$

$$\equiv a_{n+1} c_n + b_{n+1} \quad \Box$$

g) We obtain an effective key:

$$k = (a = \prod_{i=1}^{n} a_i \mod q, b = \sum_{i=1}^{n-1} b_i (\prod_{j=i+1}^{n} a_j) + b_n \mod q)$$

Therefore, successively encrypting with two different affine functions is the same as encrypting with only one effective key k = (a, b). (2P)

(20 points)

- a) Add round key $\oplus K_i$, Permutation P, S-box S, Expansion E (2P)
- b) DES decryption is the same as DES encryption with keys applied in the reversed order.
 (2P)
- c) With $K_0 = (01FE \ 01FE \ 01FE \ 01FE)$, we obtain:

	0	0	0	0	0	0	0	1	
	1	1	1	1	1	1	1	0	
	0	0	0	0	0	0	0	1	
	1	1	1	1	1	1	1	0	
	0	0	0	0	0	0	0	1	
	1	1	1	1	1	1	1	0	
C_0	0	0	0	0	0	0	0	1	↑ _D
	1	1	1	1	1	1	1	0	

Thus we read (C_0, D_0) column-wise. (C_1, D_1) are computed by a cyclic left-shift by 1 position:

 $C_{0} = (1010 \ 1010 \ 1010 \ 1010 \ 1010 \ 1010)_{2} = (AAAAAA)_{16} \quad (\mathbf{1P})$ $D_{0} = (1010 \ 1010 \ 1010 \ 1010 \ 1010 \ 1010)_{2} = (AAAAAAA)_{16} \quad (\mathbf{1P})$ $C_{1} = (0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101)_{2} = (555555)_{16} \quad (\mathbf{1P})$ $D_{1} = (0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101)_{2} = (555555)_{16} \quad (\mathbf{1P})$

For $\hat{K}_0 = (\text{FE01 FE01 FE01 FE01})$, we obtain (\hat{C}_0, \hat{D}_0) analogously. (\hat{C}_1, \hat{D}_1) are computed by a cyclic left-shift by 1 position:

 $\hat{C}_{0} = (0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101)_{2} = (555555)_{16} \quad (\mathbf{1P})$ $\hat{D}_{0} = (0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101)_{2} = (555555)_{16} \quad (\mathbf{1P})$ $\hat{C}_{1} = (1010 \ 1010 \ 1010 \ 1010 \ 1010 \ 1010)_{2} = (AAAAAA)_{16} \quad (\mathbf{1P})$ $\hat{D}_{1} = (1010 \ 1010 \ 1010 \ 1010 \ 1010 \ 1010)_{2} = (AAAAAAA)_{16} \quad (\mathbf{1P})$

We have $C_0 = D_0 = \hat{C}_1 = \hat{D}_1$ and $C_1 = D_1 = \hat{C}_0 = \hat{D}_0$.

d) When K_0 is used, we obtain (C_0, D_0) as in (a). The bits of (C_{n-1}, D_{n-1}) are cyclically left-shifted by s_n positions to generate (C_i, D_i) for i = 1, ..., 16. Due to the structure of (C_0, D_0) , cyclic right-shifts provide only two different keys: (2P)

- An even number of positions provides the identical key.
- An odd number of positions provides the alternative key.

Thus from the definition of s_n for n = 1, ..., 16, we observe that:

$$K_1 = K_9 = K_{10} = K_{11} = K_{12} = K_{13} = K_{14} = K_{15}, \quad (\mathbf{1P})$$

$$K_2 = K_3 = K_4 = K_5 = K_6 = K_7 = K_8 = K_{16} \quad (\mathbf{1P})$$

Since \hat{K}_0 has the reverse ordering of K_0 , we obtain $\text{DES}_{\hat{K}_0}(\text{DES}_{K_0}(M)) = M$. (2P)

(11 points)

a) From the Euclidean Algorithm it holds gcd(u, v) = gcd(u, u + qv) for all $q \in \mathbb{Z}$. With q = -1, we obtain gcd(u, v) = gcd(u, u - v). (1P) For two odd numbers $2|(u - v), gcd(u, v) = gcd(u, u - v) \stackrel{(ii)}{=} gcd(u, (u - v)/2)$. The proof for the other case is analogous. (1P)

b)

$$gcd(114, 48) \stackrel{(i)}{=} 2 gcd(57, 24) \stackrel{(ii)}{=} 2 gcd(57, 12) \stackrel{(ii)}{=} 2 gcd(57, 6) \stackrel{(ii)}{=} 2 gcd(57, 3)$$

$$\stackrel{(iii)}{=} 2 gcd(|57 - 3|/2, 3) = 2 gcd(27, 3) \stackrel{(iii)}{=} 2 gcd(|27 - 3|/2, 3)$$

$$= 2 gcd(12, 3) \stackrel{(ii)}{=} 2 gcd(6, 3) \stackrel{(ii)}{=} 2 gcd(3, 3) \stackrel{(ii)}{=} 2 gcd(0, 3) \stackrel{(iv)}{=} 2 \cdot 3 = 6$$
(3P)

c) (6P)

Algorithm 1 Recursive Computation of the Greatest Common Divisor

```
input: Two integers, u and v
output: gcd(u, v)
 1: procedure GCD(u, v)
        if (u = v) then
 2:
           return u;
 3:
        end if
 4:
        if (u \neq 0 \text{ and } v = 0) then
 5:
           return u;
 6:
 7:
        end if
        if (u = 0 \text{ and } v \neq 0) then
 8:
           return v;
 9:
        end if
10:
        if (u \mod 2 = 0 \text{ and } v \mod 2 = 0) then
11:
           return 2 \gcd(u/2, v/2);
12:
        end if
13:
        if (u \mod 2 \neq 0 \text{ and } v \mod 2 = 0) then
14:
           return gcd(u/2, v);
15:
        end if
16:
        if (u \mod 2 = 0 \text{ and } v \mod 2 \neq 0) then
17:
           return gcd(v/2, u);
18:
        end if
19:
        if (u \mod 2 \neq 0 \text{ and } v \mod 2 \neq 0) then
20:
           if (u > v) then
21:
               return gcd((u-v)/2, v);
22:
           end if
23:
           if (u < v) then
24:
               return gcd((v-u)/2, v);
25:
           end if
26:
        end if
27:
28: end procedure
```

(20 points)

- a) e = 1: The ciphertext does not change since $m^1 \equiv m$. There is no encryption. (1P) e = 2: The requirement that $gcd(e, \varphi(n)) = 1$ is not fulfilled, since $\varphi(n)$ is always an even number so that $2 \mid \varphi(n)$. Hence, no inverse $e^{-1} \mod \varphi(n) \equiv d$ exists. (1P)
- **b)** $d \equiv e^{-1} \mod \varphi(n)$ is computed by the Extended Euclidean Algorithm:

$$104500 = 1431 \cdot 73 + 37$$

$$73 = 37 \cdot 1 + 36$$

$$37 = 36 \cdot 1 + 1 \quad (\mathbf{1P})$$

$$\Leftrightarrow 1 = 37 - 36 \cdot 1$$

$$= 37 - (73 - 37)$$

$$= 37 \cdot 2 - 73$$

$$= (104500 - 1431 \cdot 2 \cdot 73) - 73 \cdot 1$$

$$= 104500 \cdot 2 - 2863 \cdot 73 \quad \checkmark \quad (\mathbf{1P})$$

The private key is $d = e^{-1} \equiv -2863 \equiv 101637.$ (1P)

With n = pq = 105169 and $\varphi(n) = (p - 1)(q - 1) = 104500$, we can compute the following equation:

$$\varphi(n) = pq - p - q + 1$$

$$= p \cdot \frac{n}{p} - p - \frac{n}{p} + 1$$

$$= n - p - \frac{n}{p} + 1$$

$$\Leftrightarrow 0 = n - p - \frac{n}{p} + 1 - \varphi(n)$$

$$0 = np - p^{2} - n + p - \varphi(n)p$$

$$0 = p^{2} + (\varphi(n) - 1 - n)p + n$$
 (2P)

From the solution of the p-q-formula for quadratic equations we obtain:

$$\varphi(n) - 1 - n = -670$$

$$p = 335 + \sqrt{335^2 - 105169} = 335 + \sqrt{7056} = 335 + 84 = 419, \quad (1P)$$

$$q = 335 - \sqrt{335^2 - 105169} = 335 - \sqrt{7056} = 335 - 84 = 251. \quad (1P)$$

c) $\varphi(n) = (u-1)(v-1)$, since u and v are distinct. (1P) $x^{\varphi(n)/2} \equiv x^{(u-1)(v-1)/2} \equiv (x^{u-1})^{(v-1)/2} \equiv 1^{(v-1)/2} \equiv 1 \pmod{u}$. (1P) Since v is an odd prime, it holds 2|(v-1) so that (v-1)/2 is an integer. (1P) (Remark: Note that $(x^{\frac{1}{2}})^{\varphi(n)} \pmod{n}$ is not defined!) With analogous arguments, $x^{\varphi(n)/2} \equiv 1 \mod v$ is computed. (1P)

d) Since, u and v are coprime (1P), we may apply the Chinese Remainder Theorem

(solution is $r \equiv x^{\varphi(n)/2} \mod n$):

$$\begin{aligned} x^{\varphi(n)/2} &\equiv 1 \pmod{u}, \\ x^{\varphi(n)/2} &\equiv 1 \pmod{v}, \quad \textbf{(1P)} \\ M &= pq, \\ M_1 &= v, y_1 = v^{-1} \mod{u}, \\ M_2 &= u, y_1 = u^{-1} \mod{v} \\ r &= (1 \cdot v \cdot (v^{-1} \mod{u}) + 1 \cdot u \cdot (u^{-1} \mod{v})) \pmod{u \cdot v} \\ &= (v(v^{-1} \pmod{u}) + u(u^{-1} \pmod{v}) \pmod{u \cdot v} \quad \textbf{(1P)} \\ &= 1 \quad \text{, from definition of } \gcd(u, v) = 1 \quad \textbf{(1P)} \end{aligned}$$

Note that since gcd(u, v) = 1 holds, it follows from the Extended Euclidean Algorithm, that ux + vy = gcd(u, v) = 1. The unique solutions for x and y are $x \equiv u^{-1} \mod v$ and $y \equiv v^{-1} \mod u$. (cf. lecture section 'The Extended Euclidean Algorithm')

e) If $ed \equiv 1 \pmod{\frac{1}{2}\varphi(n)}$ it follows that:

$$ed = 1 + \frac{1}{2}\varphi(n)k, \ k \in \mathbb{Z},$$

$$\Leftrightarrow x^{ed} \equiv x^{1 + \frac{1}{2}\varphi(n)k} \quad (\mathbf{1P})$$

$$\equiv x(x^{\frac{1}{2}\varphi(n)})^k \quad (\mathbf{1P})$$

$$\equiv x \cdot 1^k \equiv x \pmod{n} \quad (\mathbf{1P})$$