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Tuesday, August 18, 2015, 08:30 a.m.

Please pay attention to the following:

1) The exam consists of 4 problems. Please check the completeness of your copy. Only written solutions
on these sheets will be considered. Removing the staples is not allowed.

2) The exam is passed with at least 35 points.

3) You are free in choosing the order of working on the problems. Your solution shall clearly show the
approach and intermediate arguments.

4) Admitted materials: The sheets handed out with the exam and a non-programmable calculator.

5) The results will be published on Monday, the 24.08.15, 16:00h, on the homepage of the institute.

The corrected exams can be inspected on Tuesday, 25.08.15, 10:00h. at the seminar room 333 of the
Chair for Theoretical Information Technology, Kopernikusstr. 16.



Solution of Problem 1
(19 points)

a) The Index of Coincidence is calculated using a frequency analysis: (1P)

i Character ki

0 A 3
1 B 0
2 C 2
3 D 0
4 E 2
5 F 1
6 G 3
7 H 1
8 I 7
9 J 0
10 K 1
11 L 5
12 M 1

i Character ki

13 N 3
14 O 1
15 P 0
16 Q 0
17 R 0
18 S 2
19 T 3
20 U 0
21 V 0
22 W 0
23 X 0
24 Y 0
25 Z 0

The total number of characters in the ciphertext is N = 35. Therefore, the Index of
Coincidence is calculated with the frequencies ki as:

Ic =
∑26

i=1
ki(ki − 1)
n(n− 1) = 7 · 6 + 5 · 4 + 4(3 · 2) + 3(2 · 1)

35 · 34 = 92
1190 ≈ 0.0773 (2P)

It is known that for an English text: KE = 0.066895 =⇒ Ic ≈ KE. The Friedman Test
states that the ciphertext is monoalphabetic (and probably an English text). (1P)

b) Since the frequencies of the letters in the plaintext and the ciphertext are the same, we
can assume that a permutation cipher has been used. (1P)

c) First apply the given encryption function to c = (c1, c2, ..., c35), e.g.,

c1 = c(1−1)·5+1 = m(1−1)·7+k1

c2 = c(1−1)·5+2 = m(2−1)·7+k1

c3 = c(1−1)·5+3 = m(3−1)·7+k1

...
c6 = c(2−1)·5+1 = m(1−1)·7+k2

c7 = c(2−1)·5+2 = m(2−1)·7+k2

...
c35 = c(7−1)·5+5 = m(5−1)·7+k7

Thus, the ciphertext symbols of the first block of v = 5 symbols are each multiples
of b = 7 in the plaintext. Thus, the 5 symbols IAEGO have same offset k1 per
block of 7 symbols in the plaintext. The secret keys are the corresponding offsets:
k1 = 2, k2 = 1, k3 = 5, k4 = 7, k5 = 6, k6 = 4, k7 = 3. (4P)



Alternative solution:
The permutation applied to the ciphertext yields the following matrix structure with
the permutation keys on the bottom:

L I K E A L L
M A G N I F I
C E N T T H I
N G S I T I S
L O G I C A L
2 1 5 7 6 4 3


The ciphertext is read row-wise and the keys are the offsets from left (cf. above).

d) For an alphabet size of 2, i.e., A = {0, 1}, we use the following scheme:

01 01 01 01 01 01 01 01
00 11 00 11 00 11 00 11
00 00 11 11 00 00 11 11
00 00 00 00 11 11 11 11

With these chosen plaintexts, all bit positions are encoded by exactly one of the sixteen
unique codewords, namely, 0000, 1000, 1100, ..., 1111. (3P)

e) Minimal number of chosen messages is dlogq(l)e. (2P)

f) Applying the n encryption functions successively results in:

c1 ≡ a1m + b1 mod q

c2 ≡ a2c1 + b2 ≡ a2(a1m + b1) + b2

≡ a2a1m + a2b1 + b2 mod q

c3 ≡ a3c2 + b3

≡ a3(a2a1m + a2b1 + b2) + b3

≡ a3a2a1m + a3a2b1 + a3b2 + b3 mod q

...

cn ≡
∏n

i=1 aim +
∑n−1

i=1 bi(
∏n−1

j=i+1 aj) + bn mod q

≡
∏n

i=1 aim +
∑n

i=1 bi(
∏n

j=i+1 aj) mod q (3P)

using the definition of the empty product in the last step.
Note: A mathematical proof would involve the induction n→ n + 1:

cn+1 ≡
∏n+1

i=1 aim +
∑n+1

i=1 bi

∏n+1
j=i+1 aj

≡ an+1
∏n

i=1 aim + an+1
∑n

i=1 bi

∏n

j=i+1 aj + bn+1

≡ an+1cn + bn+1 �

g) We obtain an effective key:

k = (a =
∏n

i=1 ai mod q, b =
∑n−1

i=1 bi(
∏n

j=i+1 aj) + bn mod q)

Therefore, successively encrypting with two different affine functions is the same as
encrypting with only one effective key k = (a, b). (2P)







Solution of Problem 2
(20 points)

a) Add round key ⊕Ki, Permutation P , S-box S, Expansion E (2P)

b) DES decryption is the same as DES encryption with keys applied in the reversed order.
(2P)

c) With K0 = (01FE 01FE 01FE 01FE), we obtain:

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 0
C0 D0

Thus we read (C0, D0) column-wise. (C1, D1) are computed by a cyclic left-shift by 1
position:

C0 = (1010 1010 1010 1010 1010 1010 1010)2 = (AAAAAAA)16 (1P)
D0 = (1010 1010 1010 1010 1010 1010 1010)2 = (AAAAAAA)16 (1P)
C1 = (0101 0101 0101 0101 0101 0101 0101)2 = (5555555)16 (1P)
D1 = (0101 0101 0101 0101 0101 0101 0101)2 = (5555555)16 (1P)

For K̂0 = (FE01 FE01 FE01 FE01), we obtain (Ĉ0, D̂0) analogously. (Ĉ1, D̂1) are com-
puted by a cyclic left-shift by 1 position:

Ĉ0 = (0101 0101 0101 0101 0101 0101 0101)2 = (5555555)16 (1P)
D̂0 = (0101 0101 0101 0101 0101 0101 0101)2 = (5555555)16 (1P)
Ĉ1 = (1010 1010 1010 1010 1010 1010 1010)2 = (AAAAAAA)16 (1P)
D̂1 = (1010 1010 1010 1010 1010 1010 1010)2 = (AAAAAAA)16 (1P)

We have C0 = D0 = Ĉ1 = D̂1 and C1 = D1 = Ĉ0 = D̂0.

d) When K0 is used, we obtain (C0, D0) as in (a). The bits of (Cn−1, Dn−1) are cyclically
left-shifted by sn positions to generate (Ci, Di) for i = 1, ..., 16. Due to the structure of
(C0, D0), cyclic right-shifts provide only two different keys: (2P)



• An even number of positions provides the identical key.
• An odd number of positions provides the alternative key.

Thus from the definition of sn for n = 1, ..., 16, we observe that:

K1 = K9 = K10 = K11 = K12 = K13 = K14 = K15, (1P)
K2 = K3 = K4 = K5 = K6 = K7 = K8 = K16 (1P)

e) The key K0 generates (K1...K16) = K1K2K2K2K2K2K2K2K1K1K1K1K1K1K1K2
The key K̂0 generates (K̂1...K̂16) = K2K1K1K1K1K1K1K1K2K2K2K2K2K2K2K1
(1P) (1P)
Since K̂0 has the reverse ordering of K0, we obtain DESK̂0

(DESK0(M)) = M . (2P)







Solution of Problem 3
(11 points)

a) From the Euclidean Algorithm it holds gcd(u, v) = gcd(u, u + qv) for all q ∈ Z. With
q = −1, we obtain gcd(u, v) = gcd(u, u− v). (1P)
For two odd numbers 2|(u− v), gcd(u, v) = gcd(u, u− v) (ii)= gcd(u, (u− v)/2).
The proof for the other case is analogous. (1P)

b)

gcd(114, 48) (i)= 2 gcd(57, 24) (ii)= 2 gcd(57, 12) (ii)= 2 gcd(57, 6) (ii)= 2 gcd(57, 3)
(iii)= 2 gcd(|57− 3|/2, 3) = 2 gcd(27, 3) (iii)= 2 gcd(|27− 3|/2, 3)

= 2 gcd(12, 3) (ii)= 2 gcd(6, 3) (ii)= 2 gcd(3, 3) (ii)= 2 gcd(0, 3) (iv)= 2 · 3 = 6 (3P)

c) (6P)



Algorithm 1 Recursive Computation of the Greatest Common Divisor
input: Two integers, u and v

output: gcd(u, v)
1: procedure gcd(u, v)
2: if (u = v) then
3: return u;
4: end if
5: if (u 6= 0 and v = 0) then
6: return u;
7: end if
8: if (u = 0 and v 6= 0) then
9: return v;

10: end if
11: if (u mod 2 = 0 and v mod 2 = 0) then
12: return 2 gcd(u/2, v/2);
13: end if
14: if (u mod 2 6= 0 and v mod 2 = 0) then
15: return gcd(u/2, v);
16: end if
17: if (u mod 2 = 0 and v mod 2 6= 0) then
18: return gcd(v/2, u);
19: end if
20: if (u mod 2 6= 0 and v mod 2 6= 0) then
21: if (u > v) then
22: return gcd((u− v)/2, v);
23: end if
24: if (u < v) then
25: return gcd((v − u)/2, v);
26: end if
27: end if
28: end procedure







Solution of Problem 4
(20 points)

a) e = 1: The ciphertext does not change since m1 ≡ m. There is no encryption. (1P)
e = 2: The requirement that gcd(e, ϕ(n)) = 1 is not fulfilled, since ϕ(n) is always an
even number so that 2 | ϕ(n). Hence, no inverse e−1 mod ϕ(n) ≡ d exists. (1P)

b) d ≡ e−1 mod ϕ(n) is computed by the Extended Euclidean Algorithm:

104500 = 1431 · 73 + 37
73 = 37 · 1 + 36
37 = 36 · 1 + 1 (1P)
⇔ 1 = 37− 36 · 1

= 37− (73− 37)
= 37 · 2− 73
= (104500− 1431 · 2 · 73)− 73 · 1
= 104500 · 2− 2863 · 73 X (1P)

The private key is d = e−1 ≡ −2863 ≡ 101637. (1P)
With n = pq = 105169 and ϕ(n) = (p − 1)(q − 1) = 104500, we can compute the
following equation:

ϕ(n) = pq − p− q + 1

= p · n
p
− p− n

p
+ 1

= n− p− n
p

+ 1
⇔ 0 = n− p− n

p
+ 1− ϕ(n)

0 = np− p2 − n + p− ϕ(n)p
0 = p2 + (ϕ(n)− 1− n)p + n (2P)

From the solution of the p-q-formula for quadratic equations we obtain:

ϕ(n)− 1− n = −670
p = 335 +

√
3352 − 105169 = 335 +

√
7056 = 335 + 84 = 419, (1P)

q = 335−
√

3352 − 105169 = 335−
√

7056 = 335− 84 = 251. (1P)

c) ϕ(n) = (u− 1)(v − 1), since u and v are distinct. (1P)
xϕ(n)/2 ≡ x(u−1)(v−1)/2 ≡ (xu−1)(v−1)/2 ≡ 1(v−1)/2 ≡ 1 (mod u). (1P)
Since v is an odd prime, it holds 2|(v − 1) so that (v − 1)/2 is an integer. (1P)
(Remark: Note that (x

1
2 )ϕ(n) (mod n) is not defined!)

With analogous arguments, xϕ(n)/2 ≡ 1 mod v is computed. (1P)

d) Since, u and v are coprime (1P), we may apply the Chinese Remainder Theorem



(solution is r ≡ xϕ(n)/2 mod n):

xϕ(n)/2 ≡ 1 (mod u),
xϕ(n)/2 ≡ 1 (mod v), (1P)

M = pq,

M1 = v, y1 = v−1 mod u,

M2 = u, y1 = u−1 mod v

r = (1 · v · (v−1 mod u) + 1 · u · (u−1 mod v)) (mod u · v)
= (v(v−1 (mod u)) + u(u−1 (mod v)) (mod u · v) (1P)
= 1 , from definition of gcd(u, v) = 1 (1P)

Note that since gcd(u, v) = 1 holds, it follows from the Extended Euclidean Algorithm,
that ux + vy = gcd(u, v) = 1. The unique solutions for x and y are x ≡ u−1 mod v
and y ≡ v−1 mod u. (cf. lecture section ’The Extended Euclidean Algorithm’)

e) If ed ≡ 1 (mod 1
2ϕ(n)) it follows that:

ed = 1 + 1
2ϕ(n)k, k ∈ Z,

⇔ xed ≡ x1+ 1
2 ϕ(n)k (1P)

≡ x(x
1
2 ϕ(n))k (1P)

≡ x · 1k ≡ x (mod n) (1P)










