Univ.-Prof. Dr. rer. nat. Rudolf Mathar

1	2	3	4	\sum
$\boxed{19}$	$\boxed{20}$	$\boxed{11}$	$\boxed{20}$	$\boxed{70}$

Solution for Written Examination Advanced Methods of Cryptography

Tuesday, August 18, 2015, 08:30 a.m.

Please pay attention to the following:

1) The exam consists of 4 problems. Please check the completeness of your copy. Only written solutions on these sheets will be considered. Removing the staples is not allowed.
2) The exam is passed with at least $\mathbf{3 5}$ points.
3) You are free in choosing the order of working on the problems. Your solution shall clearly show the approach and intermediate arguments.
4) Admitted materials: The sheets handed out with the exam and a non-programmable calculator.
5) The results will be published on Monday, the $24.08 .15,16: 00 \mathrm{~h}$, on the homepage of the institute. The corrected exams can be inspected on Tuesday, 25.08.15, 10:00h. at the seminar room 333 of the Chair for Theoretical Information Technology, Kopernikusstr. 16.

Solution of Problem 1

(19 points)
a) The Index of Coincidence is calculated using a frequency analysis:

i	Character	k_{i}
0	A	3
1	B	0
2	C	2
3	D	0
4	E	2
5	F	1
6	G	3
7	H	1
8	I	7
9	J	0
10	K	1
11	L	5
12	M	1

i	Character	k_{i}
13	N	3
14	O	1
15	P	0
16	Q	0
17	R	0
18	S	2
19	T	3
20	U	0
21	V	0
22	W	0
23	X	0
24	Y	0
25	Z	0

The total number of characters in the ciphertext is $N=35$. Therefore, the Index of Coincidence is calculated with the frequencies k_{i} as:

$$
\begin{equation*}
I_{\mathbf{c}}=\sum_{i=1}^{26} \frac{k_{i}\left(k_{i}-1\right)}{n(n-1)}=\frac{7 \cdot 6+5 \cdot 4+4(3 \cdot 2)+3(2 \cdot 1)}{35 \cdot 34}=\frac{92}{1190} \approx 0.0773 \tag{2P}
\end{equation*}
$$

It is known that for an English text: $K_{E}=0.066895 \Longrightarrow I_{c} \approx K_{E}$. The Friedman Test states that the ciphertext is monoalphabetic (and probably an English text). (1P)
b) Since the frequencies of the letters in the plaintext and the ciphertext are the same, we can assume that a permutation cipher has been used. (1P)
c) First apply the given encryption function to $\boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{35}\right)$, e.g.,

$$
\begin{aligned}
& c_{1}=c_{(1-1) \cdot 5+1}=m_{(1-1) \cdot 7+k_{1}} \\
& c_{2}=c_{(1-1) \cdot 5+2}=m_{(2-1) \cdot 7+k_{1}} \\
& c_{3}=c_{(1-1) \cdot 5+3}=m_{(3-1) \cdot 7+k_{1}} \\
& \vdots \\
& c_{6}=c_{(2-1) \cdot 5+1}=m_{(1-1) \cdot 7+k_{2}} \\
& c_{7}=c_{(2-1) \cdot 5+2}=m_{(2-1) \cdot 7+k_{2}} \\
& \vdots \\
& c_{35}=c_{(7-1) \cdot 5+5}=m_{(5-1) \cdot 7+k_{7}}
\end{aligned}
$$

Thus, the ciphertext symbols of the first block of $v=5$ symbols are each multiples of $b=7$ in the plaintext. Thus, the 5 symbols IAEGO have same offset k_{1} per block of 7 symbols in the plaintext. The secret keys are the corresponding offsets: $k_{1}=2, k_{2}=1, k_{3}=5, k_{4}=7, k_{5}=6, k_{6}=4, k_{7}=3$.
(4P)

Alternative solution:

The permutation applied to the ciphertext yields the following matrix structure with the permutation keys on the bottom:

$$
\left(\begin{array}{ccccccc}
L & I & K & E & A & L & L \\
M & A & G & N & I & F & I \\
C & E & N & T & T & H & I \\
N & G & S & I & T & I & S \\
L & O & G & I & C & A & L \\
\hline 2 & 1 & 5 & 7 & 6 & 4 & 3
\end{array}\right)
$$

The ciphertext is read row-wise and the keys are the offsets from left (cf. above).
d) For an alphabet size of 2 , i.e., $\mathcal{A}=\{0,1\}$, we use the following scheme:

$$
\begin{array}{llllllll}
01 & 01 & 01 & 01 & 01 & 01 & 01 & 01 \\
00 & 11 & 00 & 11 & 00 & 11 & 00 & 11 \\
0 & 00 & 11 & 11 & 00 & 00 & 11 & 11 \\
0 & 00 & 00 & 00 & 11 & 11 & 11 & 11
\end{array}
$$

With these chosen plaintexts, all bit positions are encoded by exactly one of the sixteen unique codewords, namely, $0000,1000,1100, \ldots, 1111 . \quad(3 \mathrm{P})$
e) Minimal number of chosen messages is $\left\lceil\log _{q}(l)\right\rceil$. (2P)
f) Applying the n encryption functions successively results in:

$$
\begin{aligned}
c_{1} & \equiv a_{1} m+b_{1} \quad \bmod q \\
c_{2} & \equiv a_{2} c_{1}+b_{2} \equiv a_{2}\left(a_{1} m+b_{1}\right)+b_{2} \\
& \equiv a_{2} a_{1} m+a_{2} b_{1}+b_{2} \quad \bmod q \\
c_{3} & \equiv a_{3} c_{2}+b_{3} \\
& \equiv a_{3}\left(a_{2} a_{1} m+a_{2} b_{1}+b_{2}\right)+b_{3} \\
& \equiv a_{3} a_{2} a_{1} m+a_{3} a_{2} b_{1}+a_{3} b_{2}+b_{3} \quad \bmod q \\
& \vdots \\
c_{n} & \equiv \prod_{i=1}^{n} a_{i} m+\sum_{i=1}^{n-1} b_{i}\left(\prod_{j=i+1}^{n-1} a_{j}\right)+b_{n} \quad \bmod q \\
& \equiv \prod_{i=1}^{n} a_{i} m+\sum_{i=1}^{n} b_{i}\left(\prod_{j=i+1}^{n} a_{j}\right) \quad \bmod q \quad(3 \mathbf{P})
\end{aligned}
$$

using the definition of the empty product in the last step.
Note: A mathematical proof would involve the induction $n \rightarrow n+1$:

$$
\begin{aligned}
c_{n+1} & \equiv \prod_{i=1}^{n+1} a_{i} m+\sum_{i=1}^{n+1} b_{i} \prod_{j=i+1}^{n+1} a_{j} \\
& \equiv a_{n+1} \prod_{i=1}^{n} a_{i} m+a_{n+1} \sum_{i=1}^{n} b_{i} \prod_{j=i+1}^{n} a_{j}+b_{n+1} \\
& \equiv a_{n+1} c_{n}+b_{n+1} \quad \square
\end{aligned}
$$

g) We obtain an effective key:

$$
k=\left(a=\prod_{i=1}^{n} a_{i} \quad \bmod q, b=\sum_{i=1}^{n-1} b_{i}\left(\prod_{j=i+1}^{n} a_{j}\right)+b_{n} \quad \bmod q\right)
$$

Therefore, successively encrypting with two different affine functions is the same as encrypting with only one effective key $k=(a, b) . \quad(2 \mathbf{P})$

Solution of Problem 2

(20 points)
a) Add round key $\oplus K_{i}$, Permutation P, S-box S, Expansion E
b) DES decryption is the same as DES encryption with keys applied in the reversed order. (2P)
c) With $K_{0}=(01 \mathrm{FE} 01 \mathrm{FE} 01 \mathrm{FE} 01 \mathrm{FE})$, we obtain:

	0	0	0	0	0	0	0	1
	1	1	1	1	1	1	1	0
	0	0	0	0	0	0	0	1
	1	1	1	1	1	1	1	0
	0	0	0	0	0	0	0	1
$C_{0} \uparrow$	1	1	1	1	1	1	1	0
	0	0	0	0	0	0	0	1
	1	1	1	1	1	1	1	0

Thus we read $\left(C_{0}, D_{0}\right)$ column-wise. $\left(C_{1}, D_{1}\right)$ are computed by a cyclic left-shift by 1 position:

$$
\begin{aligned}
& C_{0}=(101010101010101010101010 \text { 1010 })_{2}=(A A A A A A A)_{16} \quad(1 P) \\
& D_{0}=(1010101010101010101010101010)_{2}=(A A A A A A A)_{16} \quad(1 P) \\
& C_{1}=(0101010101010101010101010101)_{2}=(5555555)_{16} \quad(1 P) \\
& D_{1}=(0101010101010101010101010101)_{2}=(5555555)_{16} \quad(1 P)
\end{aligned}
$$

For $\hat{K}_{0}=$ (FE01 FE01 FE01 FE01), we obtain $\left(\hat{C}_{0}, \hat{D}_{0}\right)$ analogously. $\left(\hat{C}_{1}, \hat{D}_{1}\right)$ are computed by a cyclic left-shift by 1 position:

$$
\begin{align*}
& \hat{C}_{0}=\left(\begin{array}{ll}
0101010101010101010101010101)_{2} & =(5555555)_{16} \quad(1 P) \\
\hat{D}_{0}=(0101010101010101010101010101)_{2}=(5555555)_{16} \\
\hat{C}_{1} & (1 \mathrm{P}) \\
\hat{D}_{1}=(1010101010101010101010101010)_{2}=(A A A A A A A)_{16}
\end{array} \text { (1010101010101010101010101010}\right)_{2}=(A A A A A A A)_{16} \tag{1P}
\end{align*}
$$

We have $C_{0}=D_{0}=\hat{C}_{1}=\hat{D}_{1}$ and $C_{1}=D_{1}=\hat{C}_{0}=\hat{D}_{0}$.
d) When K_{0} is used, we obtain $\left(C_{0}, D_{0}\right)$ as in (a). The bits of $\left(C_{n-1}, D_{n-1}\right)$ are cyclically left-shifted by s_{n} positions to generate $\left(C_{i}, D_{i}\right)$ for $i=1, \ldots, 16$. Due to the structure of (C_{0}, D_{0}), cyclic right-shifts provide only two different keys: (2P)

- An even number of positions provides the identical key.
- An odd number of positions provides the alternative key.

Thus from the definition of s_{n} for $n=1, \ldots, 16$, we observe that:

$$
\begin{align*}
& K_{1}=K_{9}=K_{10}=K_{11}=K_{12}=K_{13}=K_{14}=K_{15} \tag{1P}\\
& K_{2}=K_{3}=K_{4}=K_{5}=K_{6}=K_{7}=K_{8}=K_{16} \quad(1 \mathrm{P})
\end{align*}
$$

e) The key K_{0} generates $\left(K_{1} \ldots K_{16}\right)=K_{1} K_{2} K_{2} K_{2} K_{2} K_{2} K_{2} K_{2} K_{1} K_{1} K_{1} K_{1} K_{1} K_{1} K_{1} K_{2}$ The key \hat{K}_{0} generates $\left(\hat{K}_{1} \ldots \hat{K}_{16}\right)=K_{2} K_{1} K_{1} K_{1} K_{1} K_{1} K_{1} K_{1} K_{2} K_{2} K_{2} K_{2} K_{2} K_{2} K_{2} K_{1}$ (1P) (1P)
Since \hat{K}_{0} has the reverse ordering of K_{0}, we obtain $\operatorname{DES}_{\hat{K}_{0}}\left(\mathrm{DES}_{K_{0}}(M)\right)=M$.

Solution of Problem 3

(11 points)
a) From the Euclidean Algorithm it holds $\operatorname{gcd}(u, v)=\operatorname{gcd}(u, u+q v)$ for all $q \in \mathbb{Z}$. With $q=-1$, we obtain $\operatorname{gcd}(u, v)=\operatorname{gcd}(u, u-v)$. (1P)
For two odd numbers $2 \mid(u-v), \operatorname{gcd}(u, v)=\operatorname{gcd}(u, u-v) \stackrel{(i i)}{=} \operatorname{gcd}(u,(u-v) / 2)$.
The proof for the other case is analogous. (1P)
b)

$$
\begin{aligned}
\operatorname{gcd}(114,48) & \stackrel{(i)}{=} 2 \operatorname{gcd}(57,24) \stackrel{(i i)}{=} 2 \operatorname{gcd}(57,12) \stackrel{(i i)}{=} 2 \operatorname{gcd}(57,6) \stackrel{(i i)}{=} 2 \operatorname{gcd}(57,3) \\
& \stackrel{(i i i)}{=} 2 \operatorname{gcd}(|57-3| / 2,3)=2 \operatorname{gcd}(27,3) \stackrel{(i i i)}{=} 2 \operatorname{gcd}(|27-3| / 2,3) \\
& =2 \operatorname{gcd}(12,3) \stackrel{(i i)}{=} 2 \operatorname{gcd}(6,3) \stackrel{(i i)}{=} 2 \operatorname{gcd}(3,3) \stackrel{(i i)}{=} 2 \operatorname{gcd}(0,3) \stackrel{(i v)}{=} 2 \cdot 3=6(3 \mathbf{P})
\end{aligned}
$$

c) (6P)

```
Algorithm 1 Recursive Computation of the Greatest Common Divisor
input: Two integers, \(u\) and \(v\)
output: \(\operatorname{gcd}(u, v)\)
    procedure \(\operatorname{GCD}(u, v)\)
        if \((u=v)\) then
            return \(u\);
        end if
        if \((u \neq 0\) and \(v=0)\) then
            return \(u\);
        end if
        if \((u=0\) and \(v \neq 0)\) then
            return \(v\);
        end if
        if \((u \bmod 2=0\) and \(v \bmod 2=0)\) then
            return \(2 \operatorname{gcd}(u / 2, v / 2)\);
        end if
        if \((u \bmod 2 \neq 0\) and \(v \bmod 2=0)\) then
                return \(\operatorname{gcd}(u / 2, v)\);
        end if
        if \((u \bmod 2=0\) and \(v \bmod 2 \neq 0)\) then
            return \(\operatorname{gcd}(v / 2, u)\);
        end if
        if \((u \bmod 2 \neq 0\) and \(v \bmod 2 \neq 0)\) then
            if \((u>v)\) then
                return \(\operatorname{gcd}((u-v) / 2, v)\);
        end if
        if \((u<v)\) then
            return \(\operatorname{gcd}((v-u) / 2, v)\);
        end if
        end if
    end procedure
```


Solution of Problem 4

(20 points)
a) $e=1$: The ciphertext does not change since $m^{1} \equiv m$. There is no encryption. $e=2$: The requirement that $\operatorname{gcd}(e, \varphi(n))=1$ is not fulfilled, since $\varphi(n)$ is always an even number so that $2 \mid \varphi(n)$. Hence, no inverse $e^{-1} \bmod \varphi(n) \equiv d$ exists.
b) $d \equiv e^{-1} \bmod \varphi(n)$ is computed by the Extended Euclidean Algorithm:

$$
\begin{aligned}
104500 & =1431 \cdot 73+37 \\
73 & =37 \cdot 1+36 \\
37 & =36 \cdot 1+1 \quad(1 \mathbf{P}) \\
\Leftrightarrow 1 & =37-36 \cdot 1 \\
& =37-(73-37) \\
& =37 \cdot 2-73 \\
& =(104500-1431 \cdot 2 \cdot 73)-73 \cdot 1 \\
& =104500 \cdot 2-2863 \cdot 73 \quad \checkmark \quad(1 \mathbf{P})
\end{aligned}
$$

The private key is $d=e^{-1} \equiv-2863 \equiv 101637$. (1P)
With $n=p q=105169$ and $\varphi(n)=(p-1)(q-1)=104500$, we can compute the following equation:

$$
\begin{align*}
\varphi(n) & =p q-p-q+1 \\
& =p \cdot \frac{n}{p}-p-\frac{n}{p}+1 \\
& =n-p-\frac{n}{p}+1 \\
\Leftrightarrow 0 & =n-p-\frac{n}{p}+1-\varphi(n) \\
0 & =n p-p^{2}-n+p-\varphi(n) p \\
0 & =p^{2}+(\varphi(n)-1-n) p+n \tag{2P}
\end{align*}
$$

From the solution of the $p-q$-formula for quadratic equations we obtain:

$$
\begin{align*}
\varphi(n)-1-n & =-670 \\
p & =335+\sqrt{335^{2}-105169}=335+\sqrt{7056}=335+84=419, \tag{1P}\\
q & =335-\sqrt{335^{2}-105169}=335-\sqrt{7056}=335-84=251 . \tag{1P}
\end{align*}
$$

c) $\varphi(n)=(u-1)(v-1)$, since u and v are distinct. ($1 \mathbf{P}$) $x^{\varphi(n) / 2} \equiv x^{(u-1)(v-1) / 2} \equiv\left(x^{u-1}\right)^{(v-1) / 2} \equiv 1^{(v-1) / 2} \equiv 1(\bmod u) . \quad(1 \mathbf{P})$
Since v is an odd prime, it holds $2 \mid(v-1)$ so that $(v-1) / 2$ is an integer.
(Remark: Note that $\left(x^{\frac{1}{2}}\right)^{\varphi(n)}(\bmod n)$ is not defined!)
With analogous arguments, $x^{\varphi(n) / 2} \equiv 1 \bmod v$ is computed.
d) Since, u and v are coprime ($\mathbf{1 P}$), we may apply the Chinese Remainder Theorem
(solution is $r \equiv x^{\varphi(n) / 2} \bmod n$):

$$
\begin{aligned}
x^{\varphi(n) / 2} & \equiv 1 \quad(\bmod u), \\
x^{\varphi(n) / 2} & \equiv 1 \quad(\bmod v), \quad(\mathbf{1 P}) \\
M & =p q, \\
M_{1} & =v, y_{1}=v^{-1} \quad \bmod u, \\
M_{2} & =u, y_{1}=u^{-1} \quad \bmod v \\
r & =\left(\begin{array}{llll}
1 \cdot v \cdot\left(v^{-1}\right. & \bmod u)+1 \cdot u \cdot\left(u^{-1}\right. & \bmod v)) \quad(\bmod u \cdot v
\end{array}\right) \\
& =\left(v\left(v^{-1} \quad(\bmod u)\right)+u\left(u^{-1} \quad(\bmod v)\right) \quad(\bmod u \cdot v) \quad(1 \mathbf{P})\right. \\
& =1 \quad, \text { from definition of } \operatorname{gcd}(u, v)=1 \quad(\mathbf{1 P})
\end{aligned}
$$

Note that since $\operatorname{gcd}(u, v)=1$ holds, it follows from the Extended Euclidean Algorithm, that $u x+v y=\operatorname{gcd}(u, v)=1$. The unique solutions for x and y are $x \equiv u^{-1} \bmod v$ and $y \equiv v^{-1} \bmod u$. (cf. lecture section 'The Extended Euclidean Algorithm')
e) If $e d \equiv 1\left(\bmod \frac{1}{2} \varphi(n)\right)$ it follows that:

$$
\begin{align*}
e d & =1+\frac{1}{2} \varphi(n) k, \quad k \in \mathbb{Z} \\
\Leftrightarrow x^{e d} & \equiv x^{1+\frac{1}{2} \varphi(n) k} \quad(\mathbf{1 P}) \\
& \equiv x\left(x^{\frac{1}{2} \varphi(n)}\right)^{k} \quad(\mathbf{1} \mathbf{P}) \\
& \equiv x \cdot 1^{k} \equiv x \quad(\bmod n) \tag{1P}
\end{align*}
$$

