Homework 2 in Cryptography II

Prof. Dr. Rudolf Mathar, Peter Schwabe
26.04.2007

Exercise 4.

Prove Euler's criterion: Let $p>2$ be prime, then

$$
c \in \mathbb{Z}_{n}^{*} \text { is a quadratic residue } \bmod p \Longleftrightarrow c^{\frac{p-1}{2}} \equiv 1 \quad(\bmod p)
$$

Exercise 5.

Alice and Bob are using the Rabin cryptosystem. Bob's public key is $n=4757$. All integers in the set $\{1, \ldots, n-1\}$ are represented as bit sequences with 13 bits. In order to be able to identify the correct message, Alice and Bob agreed to only send messages with the first 2 bits and the last 2 bits being equal. Alice sends the cryptogram $c=1935$. Decipher this cryptogram.

Exercise 6.

An element $a \in \mathbb{Z}_{n}^{*}$ is called an m-th power residue modulo n if and only if there exists $x \in Z_{n}^{*}$ with $x^{m} \equiv a(\bmod n)$.

Prove the following statement:
Suppose \mathbb{Z}_{n}^{*} is cyclic and $a \in \mathbb{Z}_{n}^{*}$. Then a is an m-th power residue modulo n, if and only if $a^{\varphi(n) / d} \equiv 1(\bmod n)$, where $d=\operatorname{gcd}(m, \varphi(n))$.

