Lehrstuhl für Theoretische Informationstechnik

Homework 4 in Cryptography II Prof. Dr. Rudolf Mathar, Peter Schwabe 10.05.2007

Exercise 9.

Bob receives the following cryptogram from Alice:

(10101011100001101000101110010111110011011011000, 1306)

The corresponding message has been encrypted using the Blum-Goldwasser cryptosystem with public key n = 1333. The number 1306 corresponds to the value x_{10} (cf. lecture notes). Decipher the cryptogram.

Hint: The letters of the latin alphabet A, \ldots, Z have been represented using the following 5 bit representation: $A = 00000, B = 00001, \ldots, Z = 11001.$

Exercise 10.

Show that the Blum-Goldwasser cryptosystem is not secure against chosen-ciphertext-attacks.

Assume that the attacker has access to the decoding-hardware that computes the message when fed with a cryptogram. The output of the machine is not the value x_0 but only the message m. Further assume that it is possible to compute a square root modulo n when knowing the last h bits of this square root.

Exercise 11.

The security of the Blum-Blum-Shub-generator is based on the difficulty to compute square roots modulo n, where n = pq for two distinct primes p and q with $p, q \equiv 3 \pmod{4}$.

Design a generator for pseudorandom bits which is based on the hardness of the RSA-problem.