Homework 4 in Cryptography II

Prof. Dr. Rudolf Mathar, Peter Schwabe
10.05.2007

Exercise 9.

Bob receives the following cryptogram from Alice:

$$
(101010111000011010001011100101111100110111000,1306)
$$

The corresponding message has been encrypted using the Blum-Goldwasser cryptosystem with public key $n=1333$. The number 1306 corresponds to the value x_{10} (cf. lecture notes). Decipher the cryptogram.
Hint: The letters of the latin alphabet A, \ldots, Z have been represented using the following 5 bit representation: $A=00000, B=00001, \ldots, Z=11001$.

Exercise 10.

Show that the Blum-Goldwasser cryptosystem is not secure against chosen-ciphertextattacks.

Assume that the attacker has access to the decoding-hardware that computes the message when fed with a cryptogram. The output of the machine is not the value x_{0} but only the message m. Further assume that it is possible to compute a square root modulo n when knowing the last h bits of this square root.

Exercise 11.

The security of the Blum-Blum-Shub-generator is based on the difficulty to compute square roots modulo n, where $n=p q$ for two distinct primes p and q with $p, q \equiv 3(\bmod 4)$.
Design a generator for pseudorandom bits which is based on the hardness of the RSAproblem.

