Homework 8 in Cryptography II

Prof. Dr. Rudolf Mathar, Peter Schwabe 28.06.2007

Exercise 22.

Consider the equation

$$
Y^{2}=X^{3}+X+1
$$

Show that this equation describes an elliptic curve over the field \mathbb{F}_{7}.
a) Determine all points in $E\left(\mathbb{F}_{7}\right)$ and compute the trace t of E.
b) Show that $E\left(\mathbb{F}_{7}\right)$ is cyclic and give a generator.

Exercise 23.

Let $E: Y^{2}=X^{3}+a X+b$ be a curve over the field K with $\operatorname{char}(K) \neq 2,3$ and let $f:=Y^{2}-X^{3}-a X-b$.
A point $P=(x, y) \in E$ is called singular, if both formal partial derivatives $\partial f / \partial X(x, y)$ and $\partial f / \partial Y(x, y)$ vanish at P.
Prove that for the discriminant Δ of E it holds that

$$
\Delta \neq 0 \Leftrightarrow E \text { has no singular points. }
$$

Exercise 24.

Given a prime p and an elliptic curve $E: Y^{2}=X^{3}+a X+b$ over the finite field \mathbb{F}_{p}, consider the map

$$
\phi: E \rightarrow \overline{\mathbb{F}_{p}} \times \overline{\mathbb{F}_{p}}, \quad(x, y) \mapsto\left(x^{p}, y^{p}\right)
$$

Show that $\phi(x, y) \in E$ for all $(x, y) \in E$. Furthermore prove that ϕ is a group homomorphism, i.e., that $\phi\left(P_{1}+P_{2}\right)=\phi\left(P_{1}\right)+\phi\left(P_{2}\right)$. The map $\phi: E \rightarrow E$ is called Frobenius endomorphism on E.

