Lehrstuhl für Theoretische Informationstechnik



## Homework 8 in Cryptography II Prof. Dr. Rudolf Mathar, Peter Schwabe 28.06.2007

## Exercise 22.

Consider the equation

$$Y^2 = X^3 + X + 1.$$

Show that this equation describes an elliptic curve over the field  $\mathbb{F}_7$ .

- a) Determine all points in  $E(\mathbb{F}_7)$  and compute the trace t of E.
- b) Show that  $E(\mathbb{F}_7)$  is cyclic and give a generator.

## Exercise 23.

Let  $E: Y^2 = X^3 + aX + b$  be a curve over the field K with  $char(K) \neq 2, 3$  and let  $f := Y^2 - X^3 - aX - b$ . A point  $P = (x, y) \in E$  is called *singular*, if both formal partial derivatives  $\partial f / \partial X(x, y)$  and  $\partial f / \partial Y(x, y)$  vanish at P.

Prove that for the discriminant  $\Delta$  of E it holds that

 $\Delta \neq 0 \Leftrightarrow E$  has no singular points.

## Exercise 24.

Given a prime p and an elliptic curve  $E:Y^2=X^3+aX+b$  over the finite field  $\mathbb{F}_p,$  consider the map

$$\phi: E \to \overline{\mathbb{F}_p} \times \overline{\mathbb{F}_p}, \quad (x, y) \mapsto (x^p, y^p).$$

Show that  $\phi(x, y) \in E$  for all  $(x, y) \in E$ . Furthermore prove that  $\phi$  is a group homomorphism, i.e., that  $\phi(P_1 + P_2) = \phi(P_1) + \phi(P_2)$ . The map  $\phi : E \to E$  is called *Frobenius* endomorphism on E.