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1 Introduction

Current broadband wireless standards are based on Orthogonal Frequency Division Multiplexing
(OFDM), a multi-carrier modulation scheme which provides strong robustness against intersymbol inter-
ference (ISI) by dividing the broadband channel into many orthogonal narrowband subchannels in such
a way that attenuation across each subchannel stays flat. Orthogonalization of subchannels is performed
with low complexity by using the fast Fourier transform (FFT), an efficient implementation of discrete
Fourier transform (DFT), such that the serial high-rate data stream is converted into multiple parallel
low-rate streams, each modulated on a different subcarrier.

There is a variety of systems using OFDM already as WLAN (Wireless LAN, IEEE 802.11), WiMAX
(Worldwide Interoperability for Microwave Access, IEEE 802.16), DAB (Digital Audio Broadcasting),
DVB (Digital Video Broadcasting), DSL (Digital Subscriber Line), etc. Beside the existing systems there
is active research on future systems, e.g. LTE (Long Term Evolution), enhancing the existing standards
to improve system performance. The investigation and assessment of information theoretic concepts for
wireless resource management of those new systems in real-world scenarios requires flexible testbeds with
a wide range of reconfigurable parameters. This functionality is currently offered in Software Defined
Radio (SDR) technology based on general purpose hardware only.

We designed a modular, SDR based and reconfigurable framework which treats the OFDM transmission
link as a black box. The given framework contains transmitter and receiver nodes that are composed
of a host commodity computer and a general purpose radio frequency (RF) hardware, namely Universal
Software Radio Peripheral (USRP). Baseband OFDM signal processing at host computers is implemented
in the GNU Radio framework, an open source, free software toolkit for building SDRs [GNUac].

The control and feedback mechanisms provided by the given framework allow for reconfigurable assign-
ments of predefined transmission parameters at the input and estimation of link quality at the output.
High flexibility, provided by a large set of reconfigurable parameters, which are normally static in real
systems, enables implementation and assessment of different signal processing and resource allocation
algorithms for various classes of system requirements.

During this lab exercises the SDR concept will be studied. Insight into the high flexibility in system
design offered by SDR or comparable systems and corresponding architectural constraints will be gained.
Within the framework, high reconfigurability of transmission parameters allows for easy assessment and
evaluation of OFDM system performance in real wireless channel conditions and for comparison with
theoretically derived results.

This script is organized as follows. An introduction to basic OFDM system’s characteristics is given
in Chapter 2. In Section 2.1, a corresponding discrete-model is introduced and applied for analytical
assessment of the influence of system impairments which are discussed in Section 2.2. A short survey of
coherent modulation techniques commonly used in OFDM systems and their performance evaluation in
additive white Gaussian noise (AWGN) channels are presented in Section 2.3. Basic principles, archi-
tectural concepts of SDR and an introduction to GNU Radio framework are pictured in Chapter 3. In
Section 3.1, system benefits and practical limitations of SDR are addressed. Deeper insight into GNU
Radio architecture and an example of wireless channel simulation within a given framework can be gained
in Section 3.2. In Chapter 4, a detailed system description of the SDR framework, which will be used for
lab exercises, is given. Finally, the preparatory and lab exercises are described and corresponding tasks
are depicted in Chapters 5 and 6.





2 OFDM Basics

In this chapter the basic principles of OFDM baseband signal processing are given and an appropriate
discrete-time OFDM system model is introduced. In the following section impact and prevention of
synchronization errors and equalization are explained. Finally, digital modulations commonly used in
wireless transmission standards are described in Section 2.3.

OFDM is a multi-carrier modulation scheme that is widely adopted in many recently standardized broad-
band communication systems due to its ability to cope with frequency selective fading [PMK07]. The
block diagram of a typical OFDM system is shown in Fig. 2.1. The main idea behind OFDM is to divide
a high-rate encoded data stream (with symbol time TS) into N parallel substreams (with symbol time
T = NTS) that are modulated onto N orthogonal carriers (referred to as subcarriers). This operation is
easily implemented in the discrete time domain through an N -point inverse discrete Fourier transform
(IDFT) unit and the result is transmitted serially. At the receiver, the information is recovered by per-
forming a DFT on the received block of signal samples. The data transmission in OFDM systems is
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Figure 2.1: Block diagram of a typical OFDM system

accomplished in a symbolwise fashion, where each OFDM symbol conveys N (possibly coded) complex
data symbols. As a consequence of the time dispersion associated with the frequency-selective channel,
contiguous OFDM symbols may partially overlap in time-domain. This phenomenon results into inter
symbol interference ISI, with ensuing limitations of the system performance. The common approach to
mitigate ISI is to introduce a guard interval of appropriate length among adjacent symbols. In practice,
the guard interval is obtained by duplicating the last NG samples of each IDFT output and, for this
reason, is commonly referred to as cyclic prefix (CP). As illustrated in Fig. 2.2, the CP is appended
in front of the corresponding IDFT output. This results into an extended OFDM symbol consisted of
NT = N + NG samples which can totally remove the ISI as long as NG is properly designed according to
the channel delay spread.

Referring to Fig. 2.1, it can be seen that the received samples are divided into adjacent segments of length
NT , each corresponding to a different transmitted OFDM symbol. Without loss of generality, lets con-
centrate on the ith OFDM symbol at the receiver. The first operation is the CP removal, which is simply
accomplished by discarding the first NG samples of the considered segment. The remaining N samples are
fed to a DFT and the corresponding output is subsequently passed to the channel equalizer. Assuming
that synchronization has already been established and the CP is sufficiently long to eliminate the ISI,
only a one-tap complex-valued multiplier is required to compensate for the channel distortion over each
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subcarrier, which will be further described in Subsection 2.2.3. To better understand this fundamental
property of OFDM, however, we need to introduce the mathematical model of the communication scheme
depicted in Fig. 2.1.
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Figure 2.2: Structure of an OFDM symbol

2.1 Discrete-time OFDM System Model

Since OFDM is a block based communication model, a serial data stream is converted into parallel blocks
of size N and IDFT is applied to obtain time-domain OFDM symbols. Complex data symbols Ci(n), for
n = 0, . . . , N − 1, within the ith OFDM symbol are taken from either a Phase Shift Keying (PSK) or
Quadrature Amplitude Modulation (QAM) constellation. Then, time domain representation of the ith
OFDM symbol after IDFT and CP insertion is given by

ci(k) =

{

∑N−1
n=0 Ci(n)ej2πkn/N , −NG ≤ k ≤ N − 1

0, else
, (2.1)

where NG is the length of the CP which is an important design parameter of the OFDM system that
defines the maximum acceptable length of channel impulse response. Furthermore, the transmitted signal
can be obtained by concatenating OFDM symbols in time domain as

c(k) =
∑

i

ci(k − iNT ). (2.2)

In wireless communication systems transmitted signals are typically reflected, diffracted, and scattered,
arriving at the receiver along multiple paths with different delays, amplitudes, and phases as illustrated
in Fig 2.3. This leads to an overlapping of different copies of the same signal on the receiver side differing
in their amplitude, time of arrival and phase. A common model to describe the wireless channel makes
use of the channel impulse response, written as h(l) = α(l)ejθ(l), for l = 0, . . . , L − 1, where L presents
the total number of received signal paths, while α(l) and θ(l) are attenuation and phase shift of the
lth path, respectively. The differences in the time of arrival are eliminated by the cyclic prefix which
is described in the next section. In addition to multipath effects, additive noise is introduced to the
transmitted signal. The main sources of additive noise are thermal background noise, electrical noise in
the receiver amplifiers, and interference [LS06]. The noise decreases the signal-to-noise ratio (SNR) of the
received signal, resulting in a decreased performance. The total effective noise at the receiver of an OFDM
system can be modeled as AWGN with a uniform spectral density and zero-mean Gaussian probability
distribution. The time domain noise samples are represented by w(k) ∼ SCN(0, σ2

w), where σ2
w denotes

the noise variance and zero the mean of the circular symmetric complex distribution. Therefore, the
discrete-time model of received OFDM signals can be written as

y(k) =

L−1
∑

l=0

h(l)c(k − l) + w(k). (2.3)

Multipath propagation and additive noise affect the signal significantly, corrupting the signal and often
placing limitations on the performance of the system.
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multipath propagation

Tx Rx

Transmitted signal Received signal

t t

Figure 2.3: The basic principle of multipath propagation

2.2 OFDM System Impairments

Since timing and frequency errors in multi-carrier systems destroy orthogonality among subcarriers which
results in large performance degradations, synchronization of time and frequency plays a major role in
the design of a digital communication system. Essentially, this function aims at retrieving some reference
parameters from the received signal that are necessary for reliable data detection. In an OFDM system,
the following synchronization tasks can be identified [PMK07]:

• sampling clock synchronization: in practical systems the sampling clock frequency at the receiver
is slightly different from the corresponding frequency at the transmitter. This produces intercarrier
interference (ICI) at the output of the receiver’s DFT with a corresponding degradation of the
system performance. The purpose of a sampling clock synchronization is to limit this impairment
to a tolerable level.

• timing synchronization: the goal of this operation is to identify the starting point of each received
OFDM symbol in order to find the correct position of the DFT window. In burst-mode transmissions
timing synchronization is also used to locate the start of the frame (frame synchronization) which
is a collection of OFDM symbols.

• frequency synchronization: a frequency error between the local oscillators at the transmitter and
receiver results in a loss of orthogonality among subcarriers with ensuing limitations of the system
performance. Frequency synchronization aims at restoring orthogonality by compensating for any
frequency offset caused by oscillator inaccuracies.

The block diagram of the receiver is depicted in Fig. 2.4. In the analog frontend, the incoming waveform
rRF (t) is filtered and down-converted to baseband using two quadrature sinusoids generated by a local
oscillator (LO). The baseband signal is then passed to the analog-to-digital converter (ADC), where it
is sampled with frequency fs = 1/Ts. Due to Doppler shifts and/or oscillator instabilities, the frequency
fLO of the DFT is not exactly equal to the received carrier frequency fc. The difference fd = fc − fLO is
referred to as carrier frequency offset (CFO), or shorter frequency offset, causing a phase shift of 2πkfd.
Therefore, the received baseband signal can be expressed as

r(k) = y(k)ej2πεk/N (2.4)

where

ε = NfdTs (2.5)

is the frequency offset normalized to subcarrier spacing ∆f = 1/(NTs). In addition, since the time scales
at the transmitter and the receiver are not perfectly aligned, at the start-up the receiver does not know
where the OFDM symbols start and, accordingly, the DFT window will be placed in a wrong position. As
it will be shown later, since small (fractional) timing errors do not produce any degradation of the system
performance, it suffices to estimate the beginning of each received OFDM symbol within one sampling
period. Let ∆k denotes the number of samples by which the receive time scale is shifted from its ideal
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Figure 2.4: Block diagram of a basic OFDM receiver

setting. The samples from ADC are thus expressed by

r(k) = ej2πεk/N y(k − ∆k) + w(k). (2.6)

Replacing (2.2) and (2.3) in (2.6), samples are given as

r(k) = ej2πεk/N
∑

i

L−1
∑

l=0

h(l)ci(k − l − ∆k − iNT ) + w(k). (2.7)

The frequency and timing synchronization units shown in Fig. 2.4 employ the received samples r(k) to

compute estimates of ε and ∆k, noted as ε̂ and ∆̂k. The former is used to counter-rotate r(k) at an
angular speed 2πε̂k/N (frequency correction) using numerically controlled oscillator (NCO), while the
timing estimate is exploited to achieve the correct position of the received signal within the DFT window
(timing correction). Specifically, the samples r(k) with indices iNT + ∆k ≤ k ≤ iNT + ∆k + N − 1 are
fed to the DFT device and the corresponding output is used to detect the data symbols conveyed by the
ith OFDM block.

2.2.1 Effects of Frequency Offset

In order to assess the impact of a frequency error on the system performance, we assume ideal timing
synchronization and let ∆k = 0 and Ng ≥ L − 1. At the receiver, the DFT output for the ith OFDM
symbol is computed as

Ri(n) =
1

N

N−1
∑

k=0

r(k + iNT )e−j2πkn/N , 0 ≤ n ≤ N − 1 (2.8)

Substituting (2.7) into (2.8) we get

Ri(n) =
1

N

N−1
∑

k=0

[

ej2πε(k+iNT )/N
L−1
∑

l=0

h(l)ci(k − l) + w(k)

]

e−j2πkn/N

=
1

N
ejϕi

N−1
∑

k=0

ej2πk(ε−n)/N
L−1
∑

l=0

h(l)
N−1
∑

m=0

Ci(m)ej2π(k−l)m/N + Wi(n)

=
1

N
ejϕi

N−1
∑

m=0

{

L−1
∑

l=0

h(l)ej2πlm/N

}

Ci(m)
N−1
∑

k=0

e−j2πk(m+ε−n)/N + Wi(n)

=
1

N
ejϕi

N−1
∑

m=0

H(m)Ci(m)

N−1
∑

k=0

ej2πk(m+ε−n)/N + Wi(n)

(2.9)

where ϕi = 2πiεNT /N , Wi(n) is Gaussian distributed thermal noise with variance σ2
w derived as

Wi(n) =
1

N

N−1
∑

k=0

w(k)e−j2πkn/N , 0 ≤ n ≤ N − 1 (2.10)
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and H(m) is channel frequency response defined as DFT of channel impulse response given as

H(m) =

L−1
∑

l=0

h(l)e−j2πlm/N , 0 ≤ m ≤ N − 1. (2.11)

Performing standard mathematical manipulations (2.9) is derived to

Ri(n) = ejϕi

N−1
∑

m=0

H(m)Ci(m)fN (ε + m − n)ejπ(N−1)(ε+m−n)/N + Wi(n), (2.12)

where

fN (x) =
sin(πx)

N sin(πx/N)

≈ sin(πx)

πx
= si(πx)

(2.13)

can be derived using the standard approximation sin(t) ≈ t for small values of argument t.

In the case when the frequency offset is a multiple of subcarrier spacing ∆f , i.e., ε is integer-valued,
(2.12) reduces to

Ri(n) = ejϕiH(|n − ε|N )Ci(|n − ε|N ) + Wi(n), (2.14)

where |n − ε|N is the value of n − ε reduced to interval [0, N − 1). This equation indicates that an
integer frequency offset does not destroy orthogonality among subcarriers and only results
into a shift of the subcarrier indices by a quantity ε. In this case the nth DFT output is an
attenuated and phase-rotated version of Ci(|n − ε|N ) rather than of Ci(n). Otherwise, when ε is not
integer-valued the subcarriers are no longer orthogonal and ICI does occur. In this case it is convenient
to rewrite (2.12) like

Ri(n) = ej[ϕi+πε(N−1)/N ]H(n)Ci(n)fN (ε) + Ii(n, ε) + Wi(n), (2.15)

where Ii(n, ε) accounts for ICI and is given as

Ii(n, ε) = ejϕi

N−1
∑

m=0,m 6=n

H(m)Ci(m)fN (ε + m − n)ejπ(N−1)(ε+m−n)/N . (2.16)

From (2.15) it follows that non-integer normalized frequency offset ε influences the received signal on
nth subcarrier twofold. Firstly, received signals on all subcarriers are equally attenuated by f2

n(ε) and
phase shifted by (ϕi + πε(N − 1)/N), while the second addend in (2.15) presents interference from other
subcarriers (ICI).

Letting E
{

|H(n)|2
}

= 1 and assuming independent and identically distributed data symbols with zero

mean and power S = E
{

|Ci(n)|2
}

= 1, the interference term Ii(n, ε) can reasonably be modeled as a
Gaussian zero-mean random variable with variance (power) defined as

σ2
i (ε) = E

{

|Ii(n)|2
}

= S
N−1
∑

m=0
m 6=n

f2
N (ε + m − n). (2.17)

Under assumption that all subcarriers are used and by means of the identity

N−1
∑

m=0

f2
N (ε + m − n) = 1, (2.18)

which holds true independently of ε, interference power (2.17) can be written as

σ2
i (ε) = S

[

1 − f2
N (ε)

]

. (2.19)
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A useful indicator to evaluate the effect of frequency offset on the system performance is the loss in SNR,
which is defined as

γ(ε) =
SNR(ideal)

SNR(real)
, (2.20)

where SNR(ideal) is the SNR of a perfectly synchronized system given as

SNR(ideal) = S/σ2
w = ES/N0, (2.21)

where ES is the average received energy over each subcarrier while N0/2 is the two-sided power spectral
density of the ambient noise, while

SNR(real) = Sf2
N (ε)/

[

σ2
w + σ2

i (ε)
]

, (2.22)

is the SNR in the presence of a frequency offset ε. Substituting (2.21) and (2.22) into (2.20), it becomes

γ(ε) =
1

f2
N (ε)

[

1 +
ES

N0
(1 − f2

N (ε))

]

. (2.23)

For small values of ε (2.23) can be simplified using the Taylor series expansion of f2
N (ε) around ε = 0,

resulting in

γ(ε) = 1 +
1

3

ES

N0
(πε)

2
. (2.24)

It can be seen that the SNR loss is approximately proportional to the square of the normalized frequency
offset ε.

2.2.2 Effects of Timing Offset

In order to assess the performance of the OFDM system in the presence of small time offset let assume
perfect frequency synchronization, i.e., ε = 0 and consider only the effect of time offset when it is smaller
than the uncorrupted part of the cyclic prefix, i.e., ∆k ≤ Ng − (L + 1).

Under these assumptions, (2.8) is derived to

Ri(n) =
1

N

N−1
∑

k=0

[

L−1
∑

l=0

h(l)ci(k − l − ∆k) + wi(k)

]

e−j2πkn/N

=
1

N

N−1
∑

k=0

L−1
∑

l=0

h(l)

N−1
∑

m=0

Ci(m)ej2π(k−l−∆k)m/N e−j2πkn/N + Wi(n)

=
1

N

N−1
∑

m=0

[

L−1
∑

l=0

h(l)e−j2πlm/N

]

Ci(m)

[

N−1
∑

k=0

e−j2πk(m−n)/N

]

e−j2π∆km/N + Wi(n)

=
N−1
∑

m=0

H(m)Ci(m)δ(m − n)e−j2π∆km/N + Wi(n)

= H(n)Ci(n)e−j2π∆km/N + Wi(n),

(2.25)

where Wi(n) and H(m) are defined in (2.10) and (2.11), respectively, while δ(m−n) presents the Kronecker
delta defined as

δ(m − n) =

{

1, m = n

0, m 6= n.
. (2.26)

From expression above it can be seen that small time offsets causes only a linear phase rotation across
the DFT outputs and can be compensated by the channel equalizer, which can not distinguish between
phase shifts introduced by the channel and those derived from the time offset. Timing offset does not
destroy the orthogonality of the carriers and the effect of timing error is a phase rotation which linearly
changes with subcarrier order.
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2.2.3 Equalization

Channel equalization is the process through which a coherent receiver compensates for any distortion
induced by frequency-selective fading. For the sake of simplicity, ideal timing and frequency synchro-
nization is considered throughout this subsection. The channel is assumed static over each OFDM block,
but can vary from block to block. Under these assumptions, and assuming that the receiver is perfectly
synchronized, i.e, ε = 0 and ∆k = 0, the output of the receiver’s DFT unit during the ith symbol is given
by

Ri(n) = Hi(n)Ci(n) + Wi(n), 0 ≤ n ≤ N − 1 (2.27)

where Ci(n) is the complex data symbol and Wi(n) as well as H(m) are defined in (2.10) and (2.11),
respectively. An important feature of OFDM is that channel equalization can independently be performed
over each subcarrier by means of a bank of one-tap multipliers. As shown in Fig. 2.5, the nth DFT output
Ri(n) is weighted by a complex-valued coefficient Pi(n) in order to compensate for the channel-induced
attenuation and phase rotation. The equalized sample Yi(n) = Pi(n)Ri(n) is then subsequently passed to
the detection unit, which delivers final decisions Ĉi(n) on the transmitted data. Intuitively, the simplest

channel
equalization

decision
device

Ri(n) Yi(n) Ĉi(n)

Pi(n)

Figure 2.5: Block diagram of an OFDM receiver

method for the design of the equalizer coefficients, is to perform a pure channel inversion, know as
Zero-Forcing (ZF) criterion. The equalizer coefficients are then given by

Pi(n) =
1

Hi(n)
, (2.28)

while the DFT output takes the form

Yi(n) =
Ri(n)

Hi(n)
= Ci(n) +

Wi(n)

Hi(n)
, 0 ≤ n ≤ N − 1. (2.29)

From (2.29) it can be noticed that ZF equalization is capable of totally compensating for any distortion
induced by the wireless channel. However, the noise power at the equalizer output is given by σ2

w/|Hi(n)|2
and may be excessively large over deeply faded subcarriers characterized by low channel gains.

Inherent system requirement for ZF equalizer is the knowledge of the channel transfer function Hi(n).
Therefore, in many wireless OFDM systems, sequence of data symbols is preceded by several reference
OFDM symbols (preambles) known to the receiver, forming the OFDM frame. Typical frame structure
is shown in Fig. 2.6 where preambles are typically used for synchronization and/or channel estimation
purposes. In typical fixed wireless standards as WLAN, it can be assumed that the channel remains static
over frame duration, i.e., Hi(n) = H(n) for i = 1, . . . , I, where I is the total number of OFDM symbols
within one frame. Then, channel estimates obtained from the preambles can be used to coherently detect
the entire payload.

Assuming that the OFDM frame has one preamble with index i = p = 1, the output of the DFT block
(2.27) can be written as

Rp(n) = H(n)Cp(n) + Wp(n), 0 ≤ n ≤ N − 1 (2.30)
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Figure 2.6: Frame structure

where Cp(n) are complex data symbols known to the receiver. Then, estimates of the channel frequency

response Ĥ(n) can be obtained as

Ĥ(n) =
Rp(n)

Cp(n)
= H(n) +

Wp(n)

Cp(n)
, 0 ≤ n ≤ N − 1. (2.31)

On the other hand, in applications characterized by relatively high mobility as those envisioned by the
Long Term Evolution (LTE) standard, the channel response undergoes significant variations over one
frame and must continuously be tracked to maintain reliable data detection. In this case, in addition
to initial reference blocks, known symbols called pilots are normally inserted into the payload section of
the frame at some convenient positions. These pilots are scattered in both time and frequency directions
(i.e., they are positioned over different blocks and different subcarriers), and are used as reference values
for channel estimation and tracking.

In order to assess and compare the influence of system impairments on different data rates supported in
OFDM systems, a short survey of commonly used coherent modulation techniques and their performance
evaluation in AWGN channel are given is the next section.

2.3 Digital Modulations Used in OFDM Systems

Consider some digital information that is given by a finite bit sequence. To transmit this information over
a physical, analog channel by a passband signal we need a mapping rule between the set of bit sequences
and the set of possible signals or constellation points on the complex plane, as shown in Fig. 2.7. Such a
mapping rule is called a digital modulation scheme. A linear digital modulation scheme is characterized
by the complex baseband signal [Rou08]

C(t) =
∑

i

Cig(t − kT ), (2.32)

where Ci is a given constellation point and g(t) is a pulse shape used for transmission. Since mapping is
usually performed in digital domain we will keep discrete domain representation of modulated complex
symbols for further simplification. In the following we will resume some of the coherent modulation
schemes typically used in OFDM systems.

2.3.1 Phase Shift Keying (PSK)

PSK or Multiple PSK (M-PSK) modulation, where M is the number of constellation points, is charac-
terized that all signal information is put into the phase of the transmitted signal, preserving constant
envelope property. The M-PSK complex symbol Ci can be written as

Ci =
√

Sej( 2πm
M +θ0), m = 0, 1, . . . , M − 1, (2.33)

where S is the average signal power and θ0 is an arbitrary constant phase. Constellation diagrams for
M = 2, 4, 8, i.e., Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) or 4-PSK
and 8-PSK, respectively, when θ0 = 0, are shown in Fig. 2.7. The simplest PSK modulation format is
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Figure 2.7: Gray-coded M-PSK constellation diagrams

BPSK, where a logical „1“ is encoded as 0 phase, and a logical „0“ is coded as a phase of π. Then, the
modulated symbol, defined in (2.33), can be written as

Ci = ±
√

S (2.34)

with constellation diagram shown in Fig. 2.7(a). MPSK constellation diagram for 4-PSK (2 bits mapped
into 4 = 22 phases) and 8-PSK (3 bits mapped into 8 = 23 phases), are shown in Fig. 2.7(b) and
Fig. 2.7(c), respectively. Note that they are optimized to minimize the bit error rate (BER), resulting
in the gray-coded M-PSK constellation, i.e., adjacent constellation points differ in one bit as in Fig. 2.7.
The BER is defined as the ratio between the number of successfully received to the number of total
transmitted information bits and is usually taken as a measure of modulation quality. For BPSK in
AWGN it is given as [Gol05]

pb,BP SK = Q

(

√

2Eb

N0

)

, (2.35)

where Eb

N0
is the SNR per bit and Q(x) is defined as

Q(x) =
1

2
erfc

(

x√
2

)

, (2.36)

where

erfc(x) =
2√
π

∫ ∞

x

e−y2

dy (2.37)
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is the complementary error function (erfc). For higher order M-PSK, where M > 4, the symbol error
rate (SER) can be expressed as

ps,M−P SK = 2Q

(

√

2Eb log2 M

N0
sin

π

M

)

, (2.38)

where
Es

N0
=

Eb log2 M

N0

is the SNR per symbol. For Gray-coded modulations the BER in the high SNR regime for each modulation
is approximately

pb,M−P SK ≈ ps,M−P SK

log2 M
.

2.3.2 Quadrature Amplitude Modulation (QAM)
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Figure 2.8: QAM constellation diagrams

QAM is a bandwidth efficient signaling scheme that, unlike M-PSK does not possess a constant envelope
property, thus offering higher bandwidth efficiency, i.e., more bits per second (bps) can be transmitted
in a given frequency bandwidth. QAM modulated signals for M constellation points can be written as

Ci =
√

SK(Xi + jYi),

where Xi, Yi ∈
{

±1, ±3, . . . ,
√

M − 1
}

and K is a scaling factor for normalizing the average power for

all constellations to S. The K value for various constellations is shown in Table 2.1. Corresponding
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QAM constellation diagrams for 4-QAM (2 bits mapped into 4 = 22 points), 16-QAM (4 bits mapped
into 16 = 24 points), 64-QAM (6 bits mapped into 64 = 26 points), and 256-QAM (8 bits mapped into
16 = 28 points), are shown in Fig. 2.8. It can be noticed that 4-QAM corresponds to QPSK with constant
phase shift θ0 = π/4. The symbol error rate (SER) for QAM modulations can be expressed as

Modulation Number of bits m K

4-QAM 2 1/
√

2

16-QAM 4 1/
√

10

64-QAM 6 1/
√

42

256-QAM 8 1/
√

170

Table 2.1: Modulation dependent parameters

ps,M−QAM = 1 −
(

1 − 2

(

1 − 1√
M

)

Q

(
√

3
Eb log2 M

(M − 1)N0

))2

.

where Q(x) is defined in (2.36). For Gray-coded modulations the BER in the high SNR regime for each
modulation is, as for M-PSK case, approximately

pb,M−QAM ≈ ps,M−QAM

log2 M
. (2.39)

Quadrature Amplitude Modulation (QAM) schemes like 4-QAM (QPSK), 16-QAM and 64-QAM are used
in typical wireless digital communications specifications like Wireless Local Access Network (WLAN) and
Worldwide Interoperability for Microwave Access (WiMAX) [Erg09].





3 Software Defined Radio and GNU Radio
Framework

In this chapter a general introduction to the SDR concept is given. Additionally, advantages of SDRs
and given hardware limitations are addressed. Here, the GNU Radio SDR framework is presented giving
insight into the basic architectural features.

A SDR is a radio that is built entirely or in large parts in software, which runs on a general purpose
computer. A more extensive definition is given by Joseph Mitola, who established the term Software
Radio [Mit06]:

„A software radio is a radio whose channel modulation waveforms are defined in software. That is,
waveforms are generated as sampled digital signals, converted from digital to analog via a wideband digital-
to-analog converter (DAC) and then possibly upconverted from intermediate frequency (IF) to RF. The
receiver, similarly, employs a wideband ADC that captures all of the channels of the software radio
node. The receiver then extracts, downconverts and demodulates the channel waveform using software
on a general purpose processor. Software radios employ a combination of techniques that include multi-
band antennas and RF conversion; wideband ADC and DAC; and the implementation of IF, baseband
and bitstream processing functions in general purpose programmable processors. The resulting software
defined radio (or „software radio“) in part extends the evolution of programmable hardware, increasing
flexibility via increased programmability.“

This means, that instead of using analog circuits or a specialized Digital Signal Processor (DSP) to
process radio signals, the digitized signals are processed by architecture independent, and high level
software running on general purpose processors. The term radio designates any device, that transmits
and/or receives radio waves. While most modern radios contain firmware that is written in some kind of
programming language, the important distinction in a software radio is that it is not tailored to a specific
chip or platform, and it is therefore possible to reuse its code across different underlying architectures
[Mue08].

3.1 Ideal Software Defined Radio and Practical Limitations

In the ideal case, the only hardware that is needed besides a computer is an antenna and an ADC for the
receiver, as well as a digital-to-analog converter (DAC) for the transmitter. A SDR would thus look as
depicted in Fig. 3.1. In the receiver, a transmitted radio signal is picked up by an antenna, and then fed
into an ADC to sample it. Once digitized, the signal is sent to some general purpose computer (e.g. an
embedded PC) for processing. The transmitter looks very similar, except that the signal is sent in the
reverse direction, and a DAC is used instead of an ADC. In a complete transceiver, the processing unit
and the antenna may be shared between receiver and transceiver.

While the approach presented in the previous section is very simple and (in the ideal case) extremely
versatile, it is not practical, due to limitations in real hardware. However, various solutions have been
suggested to overcome these problems. A quick look at the different hardware limitations is given below.
For better readability, only the receiving side is discussed. The transmitting side is symmetrical.

• Analog-Digital Converters: According to sampling theorem, the sampling rate of ADC must be at
least twice as high as the bandwidth of received signal which limits the maximum bandwidth of the
received signal. Current ADCs are capable of sampling rates in the area of 100 Mega Samples Per
Second (MSPS), which translates to a bandwidth of 50 MHz. While this bandwidth is enough for
most current applications, the carrier frequency is usually higher than 50 MHz. In practice, a RF
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PC PCADCDAC

Figure 3.1: Ideal SDR transmission

frontend is therefore usually required, to convert the received signal to an intermediate frequency
(IF).

The second parameter, the ADC resolution influences the dynamic range of the receiver. As each
additional bit doubles the resolution of the sampled input voltage, the dynamic range can be roughly
estimated as R = 6dB × n where R is the dynamic range and n the number of bits in the ADC.
As ADCs used for SDR usually have a resolution of less than 16 bits, it is important to filter out
strong interfering signals, such as signals from mobile phones, before the wideband ADC. This is
usually done in the RF frontend.

• Bus Speed: Another problem lies in getting the data from the ADC to the computer. For any
practical bus, there is a maximum for the possible data rate, limiting the product of sample rate
and resolution of the samples. The speed of common buses in commodity PCs ranges from a few
Mbps to several Gbps as an example, the Peripheral Component Interconnect (PCI) 2.2 bus has a
theoretical maximum speed of 4256 Mbps.

• Performance of the Processing Unit: For real-time processing, the performance of the Central
Processing Unit (CPU) and the sample rate limit the number of mathematical operations that can
be performed per sample, as samples must be processed as fast as they arrive. In practice, this
means that fast CPUs, clever programming and possibly parallelization is needed. If this does not
suffice, a compromise must be found, to use a less optimal but faster signal processing algorithm.

• Latency: Since general purpose computers are not designed for real-time applications, a rather high
latency can occur in practical SDRs. While latency is not much of an issue in transmit-only or
receive-only applications, many wireless standards, such as Global System for Mobile communi-
cations (GSM) or Digital Enhanced Cordless Telecommunications (DECT) require precise timing,
and are therefore very difficult to implement in an SDR.

Because of the use of general purpose processing units, an implementation of a given wireless application
as an SDR is likely to use more power and occupy more space than a hardware radio with analog filtering
and possibly a dedicated signal processor. Because an SDR contains more complex components than a
hardware radio, it will likely be more expensive, given a large enough production volume.

Nevertheless, SDR concepts carry the flexibility of software over to the radio world and introduces a
number of interesting possibilities. For example, very much the same way as someone may load an
alternative word processor or Internet browser on a PC, depending on the task at hand, a SDR could
allow its user to load a different configuration, depending on whether the user wants to listen to a
broadcast radio transmission, place a phone call or determine the position via Global Positioning System
(GPS).Since the same hardware can be used for any application, a great reuse of resources is possible.
Another interesting possibility enabled by SDR is the creation of a cognitive radio, which is aware of its
RF environment and adapts itself to changes in the environment. By doing this, a cognitive radio can
use both the RF spectrum and its own energy resources more efficiently. As a cognitive radio requires a
very high degree of flexibility, the concept of SDR is very convenient for its practical realization.

3.2 GNU Radio Architecture

GNU Radio is an open source, free software toolkit for building SDRs [GNUac]. It is designed to run
on personal computers and (PC) combined with minimal hardware allowing the construction of simple
software radios [Mue08]. The project was started in early 2000 by Eric Blossom and has evolved into
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a mature software infrastructure that is used by a large community of developers. It is licensed under
the GNU General Public License (GPL), thus anyone is allowed to use, copy and modify GNU Radio
without limits, provided that extensions are made available under the same license. While GNU Radio
was initially started on a Linux platform, it now supports various Windows, MAC and various Unix
platforms.

GNU Radio architecture consists of two components. The first component is the set of numerous building
blocks which represents C++ implementations of digital signal processing routines such as (de)modulation,
filtering, (de)coding and I/O operations such as file access, for further information about C++ program-
ming see for example [Mey98, Mey99, Mey01, Str00, SA07]. The second component is a framework to
control the data flow among blocks, implemented as Python scripts enabling easy reconfiguration and
control of various system functionalities and parameters, for further studies on Python see e.g. [Mar03].
By „wiring“ together such building blocks, a user can create a software defined radio, similar to connect-
ing physical RF building blocks to create a hardware radio. An RF interface for GNU Radio architecture
is realized by USRP boards, a general purpose RF hardware, which performs computationally intensive
operations as filtering, up- and down-conversion. The USRP and its recent version USRP2 are connected
to PC over a USB 2.0 and Ethernet cable, respectively, and are controlled through a robust application
programming interface (API) provided by GNU Radio.

3.2.1 Gnu Radio Framework

A data flow among different blocks is abstracted by flowgraph, a directed acyclic graph in which the
vertices are the GNU Radio blocks and the edges corresponds to data streams, as shown in Fig. 3.2.
Generally, GNU Radio blocks, shown in Fig. 3.3 operate on continuous streams of data. Most blocks

Figure 3.2: An example of flowgraph

have a set of input and/or output ports, therefore, they consume data from input streams and generate
data for their output streams. Special blocks called sources and sinks only consume or produce data,
respectively. Examples of sources and sinks are blocks that read and write, respectively, from USRP
receive ports, sockets and file descriptors. Each block has an input and output signature (IO signatures)
that defines the minimum and maximum number of input and output streams it can have, as well as size
of the data type on corresponding stream. The supported types are

• c - complex interleaved floats (8 byte each),

• f - floats (4 byte),

• s - short integers (2 byte) and

• b - byte integers (1 byte).

Each block defines a general_work() function that operates on its input to produce output streams.
In order to help the scheduler decide when to call the work function, blocks also provide a forecast()
function that returns the system runtime, the number of input items it requires to produce a number of
output items and how many output items it can produce given a number of input items. At runtime,
blocks tell the system how many input (output) items they consumed (produced). Blocks may consume
data on each input stream at a different rate, but all output streams must produce data at the same
rate. The input and output streams of a block have buffers associated with them. Each input stream has
a read buffer, from which the block reads data for processing. Similarly, after processing, blocks write
data to the appropriate write buffers of its output streams. The data buffers are used to implement the
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Figure 3.3: GNU Radio blocks

edges in the flowgraph: the input buffers for a block are the output buffers of the upstream block in
the flowgraph. GNU Radio buffers are single writer, multiple reader FIFO (First in First Out) buffers.
Several blocks are connected in Python forming a flowgraph using the connect function which specifies

Hierarchical block

Sink

Source

DSP

Sink

Figure 3.4: An example of a flowgraph with a hierarchical block

how the output stream(s) of a processing block connects to the input stream of one or more downstream
blocks. The flowgraph mechanism then automatically builds the flowgraph; the details of this process
are hidden from the user. A key function during flowgraph construction is the allocation of data buffers
to connect neighboring blocks. The buffer allocation algorithm considers the input and output block
sizes used by blocks and the relative rate at which blocks consume and produce items on their input and
output streams. Once buffers have been allocated, they are connected with the input and output streams
of the appropriate block.

Several blocks can also be combined in a new block, named hierarchical block, as shown in Fig. 3.4.
Hierarchical blocks are implemented in Python and together with other blocks can be combined into
new hierarchical blocks. Input and output ports of hierarchical blocks have same constraints as those
of terminal blocks.

The GNU Radio scheduler executes the graph that was built by the flowgraph mechanism. During the
execution, the scheduler queries each block for its input requirements and it uses the above-mentioned
forecast functions to determine how much data the block can consume from its available input. If sufficient
data is available in the input buffers, the schedule calls the block’s work function. If a block does not
have sufficient input, the scheduler simply moves on to the next block in the graph. Skipped blocks will
be executed later, when more input data is available. The scheduler is designed to operate on continuous
data streams.

in FIR

NCO

Mult outAdd

Noise

Figure 3.5: Wireless communication channel simulation model
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3.2.2 An Example: Wireless Channel Simulation

It will be shown how a model for a static wireless channel can be implemented as a GNU Radio hier-
archical block. The channel is affected by multipath propagation, frequency offset and additive noise.
Fig. 3.5 shows a model with internal blocks and corresponding ports [Aur09].

Multipath effects are modeled using a FIR-filter where complex filter coefficients are taken from an
arbitrary channel model, e.g. Rayleigh channel model. The signal from an input port is derived to the
corresponding GNU Radio block gr.fir_filter_ccc. The suffix ccc denotes that the input stream, output
stream and filter coefficients are of complex data types.

According to (2.4), the frequency offset is modeled as a sinus wave with fixed frequency and is multiplied
with the incoming signal. The corresponding GNU radio blocks are the complex sine signal source
gr.sig_source_c and the multiplicator with complex inputs and outputs gr.multiply_cc, respectively.

Finally, complex additive Gaussian noise generated by gr.noise_source_c is added to the incoming
signal in the gr.add_cc block and the result is directed to the output port.

The initial parameters of a given hierarchical block, named simple_channel, are additive noise standard
variance, frequency offset normalized to sampling frequency and complex FIR-filter coefficients. IO
signatures of input and output ports are identical and in the framework there is minimum one port and
maximum one port for both input and output.

During runtime, internal blocks are initialized and connected to the flowgraph. The corresponding python
script is shown below.

Program 1 Python script for simulation of a wireless communication channel

class simple_channel(gr.hier_block2):

def __init__(self, noise_rms, frequency_offset, channel_coefficients):

gr.hier_block2.__init__(self, "simple_channel", # Blocktype Identifier

gr.io_signature(1,1,gr.sizeof_gr_complex), # incoming

gr.io_signature(1,1,gr.sizeof_gr_complex)) # outgoing

# for example channel_coefficients = [0.5+0.1j, 0.2-0.01j]

multipath_sim = gr.fir_filter_ccc(1, channel_coefficients)

# frequency_offset normalized to sampling frequency

# amplitude = 1.0, DC offset = 0.0

offset_src = gr.sig_source_c(1, gr.GR_SIN_WAVE, frequency_offset, 1.0, 0.0)

mix = gr.multiply_cc()

# noise_rms -> var(noise) = noise_rms**2

noise_src = gr.noise_source_c(gr.GR_GAUSSIAN, noise_rms/sqrt(2))

add_noise = gr.add_cc()

# describe signal paths

self.connect(self, multipath_sim) # incoming port

self.connect(multipath_sim, (mix,0))

self.connect(offset_src, (mix,1))

self.connect(mix, (noise_add,0))

self.connect(noise_src, (noise_add,1))

self.connect(noise_add, self) # outgoing port





4 GNU Radio OFDM Transceiver
Implementation

This chapter gives an introduction to an SDR based GNU Radio OFDM transceiver implemented in our
institute [ZAM09]. A system diagram of our OFDM framework is shown in Fig. 4.1. Transmitter and
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Figure 4.1: System overview

receiver nodes are composed of a host commodity computer and general purpose RF hardware, USRP.
The baseband signal processing at the host computers is implemented in the GNU Radio framework.
Within the framework, additional OFDM specific GNU Radio blocks are implemented, particularly at
receiver’s synchronization stage, since OFDM systems are highly sensitive to time offsets and oscillators’
mismatch between transmitter and receiver due to necessity for subchannel orthogonality, see Section 2.2.
The main adaptive and capacity achieving functionality is performed in blocks for adaptive mapping and
demapping of various rates (taken from the set of available modulations given in Table 4.1) and power
levels across subchannels.

Algorithms for estimation of link quality, expressed through average SNR and channel state information
(CSI) over subchannels, are extensively studied and implemented at the receiver. Furthermore, in order
to assess system performance, the receiver implementation contains blocks for BER measurements.

The communication between transmitter and receiver node is organized as a reconfigurable continuous
one-way transmission of OFDM symbol frames. As shown in Table 4.1, the set of input configuration
parameters can be divided into two classes. The set of static parameters containing FFT, number of
subchannels, frame size, etc., is initialized at transmission start and is known to both nodes. The set of
dynamic parameters which are reconfigurable at runtime includes total transmit power and allocated
rate and power over subchannels.

The backbone of the system is realized over a local Ethernet network by a Common Object Request
Broker Architecture (CORBA) event service [OMG], a distributed communication model that allows
an application to send an event that will be received by any number of objects located in different logical
and/or physical entities, for more information on CORBA see [MR97, OHE97]. Estimated parameters
that indicate link quality (average SNR, CSI, and BER) and current static transmitter’s parameters are
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(a) The transmitter’s GUI (b) The receiver’s GUI with interactive control interface

Figure 4.2: The framework’s GUI with interactive control interface

supplied as CORBA events to the event channel which allows other components (consumers) within
the system to register their interests in events. The central control unit that determines optimal input
transmission parameters for given requirements is called resource manager. Controlled by an interactive
graphical user interface (GUI) it consumes supplied events forwarded from the event channel, performs
allocation in an optimal manner, and supplies new transmission parameters, i.e., total transmit power
and power/rate per subchannel, which are finally consumed by other components in the system. The

Carrier frequency (static) 2400 − 2483 MHz
Bandwidth (static) Variable, up to 2 MHz
FFT length (static) 64 − 1024
Frame length (static) Variable
Modulations (dynamic) BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM,

64-QAM, 128-QAM, 256-QAM
Power (dynamic) Up to 20 mW

Table 4.1: OFDM symbol parameters

GUI, facilitating the demonstration, is developed in Qt/C++ framework. The transmitter’s GUI contains
static transmission parameters and current allocation of rate and power over subchannels, as shown in
Fig. 4.2(a). Furthermore, the receiver’s GUI, given in Fig. 4.2(b), dynamically shows estimated channel
parameters (average SNR, CSI, BER) and contains an interactive interface for controlling allocation
strategies and transmission parameters in the resource manager.

The system can also run in simulation mode on a single PC, without the RF interface (USRP boards),
where transmitter and receiver „communicate“ over an artificial channel. A set of channel models avail-
able through IT++ libraries [ITp] is ported to GNU Radio framework in order to evaluate the system
performance excluding hardware impairments.

Due to the high modularity and distributed nature of the system supported by a generalized interface,
the dedicated resource manager can be easily reconfigured for different classes of given requirements
and various sets of controllable parameters.



5 Preparatory Exercises

These exercises provide analytical results for system performance in AWGN channel and SNR loss due
to frequency offset. In the laboratory exercises these results will be compared to results for simulation
(local environment) and for real-time transmission. In all exercises the usage of Gray-coded modulation
is assumed.

5.1 Exercise: System Performance in an AWGN Channel

Note: For this exercise SNR values are given in decibel (dB). The relation to the linear value is given by

SNR[dB] = 10 · log10(SNR). (5.1)

1. Determine the missing BER entries pb in Table 5.1 for given values of received SNR and various
modulation schemes using (2.35) and (2.39).
Hints: For calculating the missing entries of Table 5.1 use the erfc function which is a member of
the standard Matlab library. Calculated values should be rounded to two digits, e.g., if the calculated
value is 0.001234 write it as 1.23 · 10−3.

Table 5.1: BER pb to SNR [dB] dependencies for various modulation schemes

ES/N0 [dB] 0 5 10 15 20 25 30

BERBP SK

BER4−QAM

BER16−QAM

BER64−QAM

BER256−QAM

2. Draw graphs for the BER pb depending on the SNR ES/N0 into Fig. 5.1. Sketch the graphs for
all modulation schemes given in Table 5.1 using all entries from this table. Give an appropriate
legend.

3. Using the results from Fig. 5.1, determine the required SNR ES/N0 values for achieving a BER
of 10−3. What are the differences of the determined SNRs for BPSK, 16-QAM, and 256-QAM?

5.2 Exercise: SNR Loss due to Frequency Offset

1. Determine the missing SNR loss entries and fill in the Table 5.2 for different frequency offsets and
SNRs using (2.23).
Notes: Calculate SNR losses in decibel (dB). The relation to the linear value is given by

γ(ε)[dB] = 10 · log10(γ(ε)). (5.2)

Assume that π ε
N is small.

2. Draw curves for the SNR loss γ(ε) in dependency of the frequency offset ε into Fig. 5.2. Draw the
graphs to all SNRs given in Table 5.2 taking all entries from this table. Give an appropriate legend.
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Figure 5.1: The BER over SNR performance for various modulation schemes

Table 5.2: SNR losses for different values of frequency offsets and SNRs

ε 10−2 2 · 10−2 5 · 10−2 10−1 2 · 10−1 4 · 10−1

γ(ε)|ES /N0=5[dB][dB]

γ(ε)|ES /N0=10[dB][dB]

γ(ε)|ES /N0=15[dB][dB]

γ(ε)|ES /N0=20[dB][dB]

3. Using the results from Fig. 5.2, determine the maximum tolerable frequency offsets ε for preserving
a SNR loss below 1 [dB].

4. Using (2.5), for system bandwidth of 1
TS

= 2 MHz and DFT length of N = 256, calculate the
maximum tolerable frequency offset fd in Hz for preserving the same SNR losses as in 3.

5. For the same value of frequency offset fd in Hz as in 4., what is the SNR loss for 1
TS

= 5 MHz and
N = 256?

6. For the same value of frequency offset fd in Hz as in 4., what is the SNR loss for 1
TS

= 2 MHz and
N = 64?

7. Describe the observed influence of signal bandwidth as well as the DFT length on the SNR loss.
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Figure 5.2: SNR loss over frequency offsets for different SNRs





6 Laboratory Exercises

6.1 Description

The goal of these lab exercises is to evaluate the system performance of a given SDR framework in
simulation and RF transmission conditions. The system performance for actual RF transmission will be
investigated in Section 6.2. Rate-power curves for certain BERs will be derived and compared with the
performance of previously simulated AWGN channel. This is extended to simulations on a frequency
selective channel in Section 6.3. Since the bandwidth of the current GNU radio setup is too small to
observe frequency selectivity, there is no RF transmission in this section. It will be demonstrated that
the utilization of good channel conditions enhances bandwidth efficiency of the OFDM system. Finally,
in Section 6.4 the impact of frequency offsets is investigated. A joint discussion of the results will take
place at the end of the lab.

During the exercises there will be up to 5 groups of 2-4 students working with 2 PCs equipped with
USRPs. Simulations in exercises 6.3 and 6.4.1 should be executed on a single PC and each group should
be appropriately divided. For the RF transmission exercises 6.2 and 6.4.2 the whole group should use
2 PCs, one transmitter and one receiver PC.

6.2 Lab 1: RF transmission

This task needs to be performed on two PCs. This section is implicitly related to the analytical results
obtained in the preparatory exercises of Section 5.1. In order to achieve particular BER, each modulation
requires a certain SNR value which defines the rate-power function for a given system. BER values of 10−2

and 10−3 will be investigated while rate-power curves will be obtained for the actual RF transmission with
USRP boards. The exercise will be concluded with discussion and comparison with previously simulated
rate-power curves for AWGN channel.

1. TX: Open data_exercise_1.xls.

2. Start the initialization launcher.

3. RX: Observe the spectrum at the receiver by starting receiver_spectrum and enter in the dialog
window the carrier frequency given by the supervisors.

4. TX: Launch start_transmitter. Enter in the dialog window the same carrier frequency.

5. TX: To determine the transmit amplitude for obtaining the desired BER for a particular modulation
scheme, e.g., BPSK, start the calibration resource manager by clicking on calibrate_mode. Enter
in the dialog window the modulation scheme.

6. TX: In order to monitor the system performance start the transmitter’s GUI by clicking on txgui.

7. RX: Observe the spectrum at the receiver. What is the bandwidth of transmitted OFDM signal?

8. RX: Stop the spectrum GUI, initialize the receiver by starting receiver_initialization, and enter
transmitter’s hostname.

9. RX: Run start_receiver. Enter in the dialog windows the same carrier frequency and transmitter’s
hostname. If the terminal is filled with minus signs restart start_receiver and enter a different
carrier frequency increased or decreased by 20 kHz, otherwise proceed with next steps.

10. RX: Run scatterplot.
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11. RX: In order to monitor the system performance start the receiver’s GUI by clicking on rxgui_rf
and enter in the dialog window transmitter’s hostname.

12. RX: Fit the measured BER of simulation to 10−2 by adjusting the transmit amplitude, i.e., ad-
just the value in the textfield Constraint, see Figure 4.2(b). Write down the selected transmit
amplitude as it will be used further on.

13. TX: After finding required transmit amplitude for desired BER stop the calibration by pressing
<CTRL>C in given shell terminal.

14. TX: Run exercise_1. Enter in the dialog windows the currently investigated modulation scheme
and previously calibrated transmit amplitude.

15. RX: Restart receiver’s GUI rxgui_rf.

16. TX: Read measured received mean SNR and BER value from the resource manager exer-
cise_1 terminal or from log file BPSK_simulation located in ~/omnilog/ and enter it in
data_exercise_1.xls.

17. TX: Stop the resource manager exercise_1.

18. RX: Stop the receiver’s GUI rxgui_rf.

19. All: Repeat steps 5. to 18. for all modulation schemes.

20. All: Repeat steps 5. to 19. for a BER of 10−3.

21. TX: Save data_exercise_1.xls and execute plot_exercise_1.m in the Matlab’s command
window.

22. All: The curves of BER and rate-power function which are results of yyour evaluation will be shown.

23. All: Compare and interpret these results with the ones from simulation.

24. All: Close all simulation windows.

6.3 Lab 2: Frequency Selective Channel

This task needs to be performed on a single PC. The goal of this lab exercise is to demonstrate the
bandwidth efficiency of OFDM systems in frequency selective channels. The experiment is based on
system simulation since the real channel environment for the given transmission bandwidth does not
experience multipath propagation. Firstly, the OFDM system where all subcarriers are loaded with
BPSK symbols is simulated. The required BER is reached by fitting the transmit amplitude. Then, using
the same transmit amplitude, the OFDM system is simulated using the better half of the subcarriers
loaded with QPSK symbols, thus preserving the same data rate and halving the bandwidth usage. This
usage of subcarriers per modulation scheme is depicted in Fig. 6.1. A corresponding simulation model is
shown in Fig. 6.2.

1. Open data_exercise_2.xls.

2. Run initialization.

3. Start system simulation by clicking on start_simulation_freq_sel.

4. To determine the transmit amplitude for obtaining the desired BER for a particular modulation
scheme, start the calibration resource manager by clicking on calibrate_mode. Enter in the
dialog window modulation scheme BPSK.

5. In order to monitor the system performance start the transmitter’s and the receiver’s GUIs txgui
and rxgui, respectively.

6. At the receiver’s GUI, fit the measured BER of simulation to 10−2 by adjusting the transmit
amplitude, i.e., adjust the value in the textfield Constraint, see Figure 4.2(b). Write down the
selected transmit amplitude as it will be used further on.

7. After finding the required transmit amplitude for desired BER stop the calibration by pressing
<CTRL>C in given window.
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Figure 6.1: Using all subcarriers with BPSK and using the better half with QPSK

Add

Noise
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Figure 6.2: Multipath channel model

8. Start the system evaluation where all subcarriers are loaded with BPSK symbols by clicking on
exercise_21. Enter in the dialog window the previously calibrated transmit amplitude.

9. Restart receiver’s GUI rxgui.

10. Read measured received mean BER value from the resource manager terminal exercise_21 or
from log file BPSK_freq_select located in ~/omnilog/ and enter it in data_exercise_2.xls.

11. Stop the resource manager exercise_21.

12. Run exercise_22 for system evaluation where half of the subcarriers with good channel conditions
are loaded with QPSK symbols, thus preserving the same data rate as in previous case. Enter in
the dialog window the previously calibrated transmit amplitude.

13. Restart receiver’s GUI rxgui.

14. Observe at the transmitter’s GUI the rate and power loading.

15. Read measured received mean BER value from the resource manager terminal exercise_22 or
from log file QPSK_freq_select located in ~/omnilog/ and enter it in data_exercise_2.xls.

16. Close receiver’s GUI rxgui.

17. Repeat steps 4. to 16. for a BER of 10−3.

18. Save data_exercise_2.xls and execute plot_exercise_2.m in Matlab.

19. What do you observe?

20. Close all simulation windows.

6.4 Lab 3: Frequency Offset Analysis

The goal of this lab exercise is to examine the influence of frequency offset on system performance.
Without loss of generality, the experiment will be conducted only for QPSK modulation scheme.
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6.4.1 System Simulation

This task needs to be performed on a single PC still. The corresponding simulation model of a wireless
channel in the presence of AWGN and CFO is shown in Fig. 6.3.

NCO

Mult Add

Noise

Tx Rx

Figure 6.3: Multipath channel model

1. Open data_exercise_3.xls.

2. Run initialization.

3. Execute scatterplot.

4. Start system simulation for SNR values given in Table 6.1 by clicking on start_simulation_cfo.
Enter in the dialog window frequency offset 0. This will be used for calibrations.

5. To determine the transmit amplitude for obtaining the desired estimated SNRs, start cali-
brate_cfo.

6. In order to monitor the system performance start the transmitter’s and the receiver’s GUIs txgui
and rxgui, respectively.

7. At the receiver’s GUI, fit the measured SNR of simulation to all SNR values under investigation
by adjusting the transmit amplitude, i.e., adjust the value in the textfield Constraint, see Fig-
ure 4.2(b). Write down all the selected transmit amplitudes as they will be used further on.

8. After finding the required transmit amplitudes for all desired SNRs stop the calibration and system
simulation by pressing <CTRL>C in given windows.

9. Restart the system simulation by clicking on start_simulation_cfo. Enter in the dialog window
the currently investigated frequency offset.

10. Run exercise_31. Enter in the dialog windows the previously calibrated transmit amplitude and
nominal SNR value under investigation.

11. Restart receiver’s GUI rxgui.

12. Read measured received mean SNR value from the resource manager terminal exercise_31 or
from log file snrmeas_dB_freq_off.txt located in ~/omnilog/, where snrmeas is the SNR
under investigation. Enter this value in data_exercise_3.xls.

13. Stop the resource manager exercise_31 and receiver’s GUI rxgui.

14. Repeat steps 10. to 13. for all SNRs given in Table 6.1.

15. Repeat steps 9. to 14. for all frequency offset values given in Table 6.1.

16. Fill in the data_exercise_3.xls by means of measured values in Table 6.1.

17. Execute the plot_exercise_3.m in the Matlab command window.

18. Compare the obtained curves to those derived from the analytical model. How much do they differ
and why?

19. Close all simulation windows.
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Table 6.1: Measured SNR for different values of frequency offsets and nominal SNRs

ε 0 10−2 2 · 10−2 5 · 10−2 10−1 2 · 10−1

Measured ES/N0|ES /N0=5[dB][dB]

Measured ES/N0|ES /N0=10[dB][dB]

Measured ES/N0|ES /N0=15[dB][dB]

Measured ES/N0|ES /N0=20[dB][dB]

6.4.2 RF Transmission

This task needs to be performed on two PCs again.

1. RX: Observe the spectrum at the receiver by clicking on receiver_spectrum launcher and enter
in the dialog window the carrier frequency given by the supervisors.

2. TX: Start start_transmitter. Enter in the dialog window the same carrier frequency.

3. TX: To determine the transmit amplitude for matching the particular SNR value start the calibra-
tion resource manager by clicking on calibrate_mode. Enter in the dialog window the QPSK
modulation scheme.

4. TX: In order to monitor the system performance start the transmitter’s GUI by clicking on txgui.

5. RX: Stop the signal spectrum GUI, launch receiver_initialization, and enter transmitter’s host-
name.

6. RX: Start the receiver by clicking on start_receiver_cfo. Enter in the dialog windows the same
carrier frequency and transmitter’s hostname. If the terminal is filled with minus signs restart
start_receiver_cfo and enter a different carrier frequency increased or decreased by 20 kHz,
otherwise proceed with next steps.

7. RX: In order to monitor the system performance start the receiver’s GUI by clicking on rxgui_rf
and enter in the dialog window the transmitter’s hostname.

8. RX: Run scatterplot.

9. RX: Stop the receiver after about ten seconds and open the log file by starting plot_freq_offset.

10. All: Read the estimated frequency offset ε̂ from the figure and calculate the frequency offset f̂d in Hz
using (2.5). Note that the bandwidth you use as transmission parameter corresponds to 1/Ts.

11. RX: Add the measured frequency offset f̂d to your previously used frequency for RF transmission
and restart the receiver entering the new corrected frequency.

12. RX: Stop the receiver after about ten seconds and open the log file again.

13. All: What is the new value of the estimated frequency offset?

14. All: Conclude the results.

15. All: Close all simulation windows.

6.5 Final Discussion

Execute print_results and wait for the final joint discussion of the laboratory results.





Glossary

ADC Analog-to-Digital Converter

API Application Programming Interface

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CFO Carrier Frequency Offset

CORBA Common Object Request Broker Architecture

CP Cyclic Prefix

CPU Central Processing Unit

CSI Channel State Information

DAC Digital-to-Analog Converter

DECT Digital Enhanced Cordless Telecommunications

DFT Discrete Fourier Transform

DSP Digital Signal Processor

FFT Fast Fourier Transform

GPS Global Positioning System

GSM Global System for Mobile communications

GUI Graphical User Interface

ICI InterCarrier Interference

IDFT Inverse Discrete Fourier Transform

IF Intermediate Frequency

ISI InterSymbol Interference

LO Local Oscillator

LTE Long Term Evolution

NCO Numerically Controlled Oscillator

OFDM Orthogonal Frequency Division Multiplexing

PCI Peripheral Component Interconnect

PSK Phase Shift Keying
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QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

SDR Software Defined Radio

SER Symbol Error Rate

SNR Signal-to-Noise Ratio

USRP Universal Software Radio Peripheral

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Access Network
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