Homework 2 in Optimization in Engineering Prof. Dr. Anke Schmeink, Michael Reyer, Alper Tokel 27.10.2014

Exercise 1. (Convex sets and figures) Show that the following sets are convex.

- (a) The set $C = \bigcap_{i \in \mathcal{I}} C_i$ as intersection of convex sets C_i where \mathcal{I} is an index set.
- (b) A slab $\{ \boldsymbol{x} \in \mathbb{R}^n \mid \alpha \leq \boldsymbol{a}^T \boldsymbol{x} \leq \beta \}$ with $\boldsymbol{a} \in \mathbb{R}^n_{\neq 0}$ and $\alpha, \beta \in \mathbb{R}$.

RNNTHAACHEN

- (c) A rectangle $\{ \boldsymbol{x} \in \mathbb{R}^n \mid \alpha_i \leq x_i \leq \beta_i, i = 1, \dots, n \}$ with $\alpha_i, \beta_i \in \mathbb{R}, 1 \leq i \leq n$.
- (d) A wedge $\{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{a}_1^T \boldsymbol{x} \leq \beta_1, \ \boldsymbol{a}_2^T \boldsymbol{x} \leq \beta_2 \}$ with $\boldsymbol{a}_1, \boldsymbol{a}_2 \in \mathbb{R}_{\neq 0}^n$ and $\beta_1, \beta_2 \in \mathbb{R}$.

Hint: Halfspaces $\{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{a}^T \boldsymbol{x} \leq b \}$ with $\boldsymbol{a} \in \mathbb{R}_{\neq 0}^n$ and $b \in \mathbb{R}$ are convex sets.

Exercise 2. (Polyhedron) Which of the following sets $S \subseteq \mathbb{R}^n$ describe a polyhedron? Describe, if possible, the set as $S = \{x \in \mathbb{R}^n \mid Ax \leq b, Cx = d\}$ with $A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^m, d \in \mathbb{R}^p$.

- (a) $S = \{y_1 \boldsymbol{a}_1 + y_2 \boldsymbol{a}_2 \mid -1 \leq y_1 \leq 1, -1 \leq y_2 \leq 1\}$ with $\boldsymbol{a}_1, \boldsymbol{a}_2 \in \mathbb{R}^n$.
- (b) $S = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} \ge \boldsymbol{0}, \sum_{i=1}^n x_i = 1, \sum_{i=1}^n x_i a_i = b_1, \sum_{i=1}^n x_i a_i^2 = b_2 \}$ with $a_1, \ldots, a_n \in \mathbb{R}$ and $b_1, b_2 \in \mathbb{R}$.
- (c) $S = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} \ge \boldsymbol{0}, \, \boldsymbol{x}^T \boldsymbol{y} \le 1 \text{ for all } \boldsymbol{y} \text{ with } \|\boldsymbol{y}\|_2 = 1 \}.$
- (d) $S = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} \ge \boldsymbol{0}, \, \boldsymbol{x}^T \boldsymbol{y} \le 1 \text{ for all } \boldsymbol{y} \text{ with } \|\boldsymbol{y}\|_1 = 1 \}.$

Exercise 3. (Semidefinite matrices and cones)

- (a) Show that the eigenvalues of a positive semidefinite matrix are nonnegative.
- (b) Prove the following equivalence for the positive semidefinite cone in S^2 .

$$\boldsymbol{X} = \begin{pmatrix} x & y \\ y & z \end{pmatrix} \in \mathcal{S}^2_{\geq 0} \Longleftrightarrow x \geq 0, z \geq 0, xz \geq y^2.$$