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Exercise 1. (Separation Theorem) Complete the proof of the Separation Theorem
(Theorem 2.1 in the lecture notes), which is proved for a special case in the lecture. Show
that a separating hyperplane exists for two disjoint convex sets C and D.

Hints.

• You can use the result proved in Theorem 2.1 in the lecture, i.e., that a separating
hyperplane exists when there exist points in the two sets whose distance is equal to
the distance between the two sets.

• If C and D are disjoint convex sets, then the set {x - y | x ∈ C , y ∈ D} is convex
and does not contain the origin.

Exercise 2. (Supporting hyperplanes) Represent each of the following closed, convex
sets C ⊆ R2 as an intersection of halfspaces.

(a) C = {x ∈ R2 |x2 ≥ ex1}.

(b) C = {x ∈ R2
>0 |x1x2 ≥ 1}.

Exercise 3. (Linear-fractional functions and convex sets) Let f : Rn 7→ Rm be the linear
fractional function

f(x) =
Ax + b

cTx + d
, domf = {x ∈ Rn | cTx + d > 0}.

The inverse image of a convex set C under f is defined as

f−1(C) = {x ∈ domf | f(x) ∈ C}.

Give a description of the inverse image f−1(C) for each of the following sets C ∈ Rm as an
intersection of the domf with a halfspace in (a), with a polyhedron in (b), and with an
ellipsoid in (c).

(a) The halfspace C = {y ∈ Rm | gTy ≤ h} with g ∈ Rm
6=0 and h ∈ R.

(b) The polyhedron C = {y ∈ Rm | GTy ≤ h} with G ∈ Rm × Rn and h ∈ Rn.

(c) The ellipsoid C = {y ∈ Rm | yTP−1y ≤ 1} where P ∈ Sm
>0.


