

Exercise 1. (Separation Theorem) Complete the proof of the Separation Theorem (Theorem 2.1 in the lecture notes), which is proved for a special case in the lecture. Show that a separating hyperplane exists for two disjoint convex sets C and D.

Hints.

RWTHAACHEN

- You can use the result proved in Theorem 2.1 in the lecture, i.e., that a separating hyperplane exists when there exist points in the two sets whose distance is equal to the distance between the two sets.
- If C and D are disjoint convex sets, then the set $\{x y \mid x \in C, y \in D\}$ is convex and does not contain the origin.

Exercise 2. (Supporting hyperplanes) Represent each of the following closed, convex sets $C \subseteq \mathbb{R}^2$ as an intersection of halfspaces.

(a)
$$C = \{ \boldsymbol{x} \in \mathbb{R}^2 \, | \, x_2 \ge e^{x_1} \}.$$

(b) $C = \{ \boldsymbol{x} \in \mathbb{R}^2_{>0} \mid x_1 x_2 \ge 1 \}.$

Exercise 3. (Linear-fractional functions and convex sets) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be the linear fractional function

$$f(\boldsymbol{x}) = \frac{\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}}{\boldsymbol{c}^T \boldsymbol{x} + d}, \ \mathbf{dom} f = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{c}^T \boldsymbol{x} + d > 0 \}.$$

The inverse image of a convex set \mathcal{C} under f is defined as

 $f^{-1}(\mathcal{C}) = \{ \boldsymbol{x} \in \operatorname{dom} f \mid f(\boldsymbol{x}) \in \mathcal{C} \}.$

Give a description of the inverse image $f^{-1}(\mathcal{C})$ for each of the following sets $\mathcal{C} \in \mathbb{R}^m$ as an intersection of the **dom** f with a halfspace in (a), with a polyhedron in (b), and with an ellipsoid in (c).

- (a) The halfspace $\mathcal{C} = \{ \boldsymbol{y} \in \mathbb{R}^m \mid \boldsymbol{g}^T \boldsymbol{y} \leq h \}$ with $\boldsymbol{g} \in \mathbb{R}_{\neq 0}^m$ and $h \in \mathbb{R}$.
- (b) The polyhedron $C = \{ \boldsymbol{y} \in \mathbb{R}^m \mid \boldsymbol{G}^T \boldsymbol{y} \leq \boldsymbol{h} \}$ with $\boldsymbol{G} \in \mathbb{R}^m \times \mathbb{R}^n$ and $\boldsymbol{h} \in \mathbb{R}^n$.
- (c) The ellipsoid $\mathcal{C} = \{ \boldsymbol{y} \in \mathbb{R}^m \mid \boldsymbol{y}^T \boldsymbol{P}^{-1} \boldsymbol{y} \leq 1 \}$ where $\boldsymbol{P} \in \mathcal{S}_{>0}^m$.