Homework 3 in Optimization in Engineering

Prof. Dr. Anke Schmeink, Michael Reyer, Alper Tokel
03.11.2014

Exercise 1. (Separation Theorem) Complete the proof of the Separation Theorem (Theorem 2.1 in the lecture notes), which is proved for a special case in the lecture. Show that a separating hyperplane exists for two disjoint convex sets \mathcal{C} and \mathcal{D}.

Hints.

- You can use the result proved in Theorem 2.1 in the lecture, i.e., that a separating hyperplane exists when there exist points in the two sets whose distance is equal to the distance between the two sets.
- If \mathcal{C} and \mathcal{D} are disjoint convex sets, then the set $\{\boldsymbol{x}-\boldsymbol{y} \mid \boldsymbol{x} \in \mathcal{C}, \boldsymbol{y} \in \mathcal{D}\}$ is convex and does not contain the origin.

Exercise 2. (Supporting hyperplanes) Represent each of the following closed, convex sets $\mathcal{C} \subseteq \mathbb{R}^{2}$ as an intersection of halfspaces.
(a) $\mathcal{C}=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid x_{2} \geq e^{x_{1}}\right\}$.
(b) $\mathcal{C}=\left\{\boldsymbol{x} \in \mathbb{R}_{>0}^{2} \mid x_{1} x_{2} \geq 1\right\}$.

Exercise 3. (Linear-fractional functions and convex sets) Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be the linear fractional function

$$
f(\boldsymbol{x})=\frac{\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}}{\boldsymbol{c}^{T} \boldsymbol{x}+d}, \operatorname{dom} f=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{c}^{T} \boldsymbol{x}+d>0\right\}
$$

The inverse image of a convex set \mathcal{C} under f is defined as

$$
f^{-1}(\mathcal{C})=\{\boldsymbol{x} \in \operatorname{dom} f \mid f(\boldsymbol{x}) \in \mathcal{C}\}
$$

Give a description of the inverse image $f^{-1}(\mathcal{C})$ for each of the following sets $\mathcal{C} \in \mathbb{R}^{m}$ as an intersection of the $\operatorname{dom} f$ with a halfspace in (a), with a polyhedron in (b), and with an ellipsoid in (c).
(a) The halfspace $\mathcal{C}=\left\{\boldsymbol{y} \in \mathbb{R}^{m} \mid \boldsymbol{g}^{T} \boldsymbol{y} \leq h\right\}$ with $\boldsymbol{g} \in \mathbb{R}_{\neq 0}^{m}$ and $h \in \mathbb{R}$.
(b) The polyhedron $\mathcal{C}=\left\{\boldsymbol{y} \in \mathbb{R}^{m} \mid \boldsymbol{G}^{T} \boldsymbol{y} \leq \boldsymbol{h}\right\}$ with $\boldsymbol{G} \in \mathbb{R}^{m} \times \mathbb{R}^{n}$ and $\boldsymbol{h} \in \mathbb{R}^{n}$.
(c) The ellipsoid $\mathcal{C}=\left\{\boldsymbol{y} \in \mathbb{R}^{m} \mid \boldsymbol{y}^{T} \boldsymbol{P}^{-1} \boldsymbol{y} \leq 1\right\}$ where $\boldsymbol{P} \in \mathcal{S}_{>0}^{m}$.

