Homework 5 in Optimization in Engineering
 Prof. Dr. Anke Schmeink, Michael Reyer, Alper Tokel
 17.11.2014

Exercise 1. (Products and quotients of convex functions) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}_{>0}$. Prove the following statements.
(a) If f and g are convex and not decreasing (or not increasing), then the product $p(x)=f(x) g(x)$ is convex.
(b) If f and g are concave, f is not decreasing and g is not increasing (or vice versa), then the product $p(x)=f(x) g(x)$ is concave.
(c) If f is convex and not decreasing as well as g is concave and not increasing, then the quotient $q(x)=\frac{f(x)}{g(x)}$ is convex.

Exercise 2. (Geometric solution of optimization problem) Consider the optimization problem

$$
\begin{aligned}
& \operatorname{minimize} f_{k}(\boldsymbol{x}) \\
& \text { subject to } g_{i}(\boldsymbol{x}) \leq 0, i=1,2,3
\end{aligned}
$$

for some $f_{k}, g_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\boldsymbol{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and

$$
\begin{aligned}
& g_{1}(\boldsymbol{x})=x_{1}^{2}+x_{2}^{2}-1, \\
& g_{2}(\boldsymbol{x})=x_{1}+x_{2}-1, \\
& g_{3}(\boldsymbol{x})=x_{1}-x_{2}-1 .
\end{aligned}
$$

(a) Plot the feasible set $M=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid g_{i}(\boldsymbol{x}) \leq 0, i=1,2,3\right\}$.
(b) Solve the optimization problem geometrically for

$$
\begin{aligned}
& f_{1}(\boldsymbol{x})=x_{1}^{2}+x_{2}^{2}, \\
& f_{2}(\boldsymbol{x})=\left(x_{1}+2\right)^{2}+x_{2}^{2}, \\
& f_{3}(\boldsymbol{x})=\left(x_{1}-2\right)^{2}+x_{2}^{2}
\end{aligned}
$$

Exercise 3. (Optimality criterion for convex problems) Let $f: \mathcal{C} \rightarrow \mathbb{R}$ with $\mathcal{C} \subseteq \mathbb{R}^{n}$ be a differentiable objective function of a convex optimization problem in standard form and $M[h, g] \subseteq \mathcal{C}$ the corresponding feasible set.
(a) Show that $\boldsymbol{x}^{*} \in M[h, g]$ is optimal, iff

$$
\nabla f\left(\boldsymbol{x}^{*}\right)^{T}\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right) \geq 0
$$

for all $\boldsymbol{y} \in M[h, g]$.
(b) Let $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{P} \boldsymbol{x}+\boldsymbol{q}^{T} \boldsymbol{x}+r, \boldsymbol{x} \in \mathbb{R}^{3}$, with

$$
\boldsymbol{P}=\left(\begin{array}{ccc}
13 & 12 & -2 \\
12 & 17 & 6 \\
-2 & 6 & 12
\end{array}\right), \quad \boldsymbol{q}=\left(\begin{array}{l}
-22 \\
-14.5 \\
13.0
\end{array}\right), \quad r=1
$$

be the objective function with constraints

$$
-1 \leq x_{i} \leq 1, \quad i=1,2,3 .
$$

Show that the point $\boldsymbol{x}^{*}=(1,0.5,-1)^{T}$ is an optimal solution.
Hint: Use the first order condition for part (a).

