Homework 12 in Optimization in Engineering

Prof. Dr. Anke Schmeink, Michael Reyer, Alper Tokel

19.01.2014

Exercise 1. (Backtracking line search) Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a strict convex function with $\nabla^{2} f(\boldsymbol{x}) \leq M \boldsymbol{I}_{n}$ for $M>0$ and $\Delta \boldsymbol{x}$ the descent direction at $\boldsymbol{x} \in \mathbb{R}^{n}$.
(a) Show that the backtracking line search stopping criterion holds for

$$
0<t \leq-\frac{\nabla f(\boldsymbol{x})^{T} \Delta \boldsymbol{x}}{M\|\Delta \boldsymbol{x}\|_{2}^{2}}
$$

(b) Use the above result to derive an upper bound on the number of backtracking iterations.

Exercise 2. (Pure Newton method) Consider the minimization of the following functions. Plot f, g and their derivatives. Apply the pure Newton method for fixed step size $t=1$ and calculate the values for the first few iterations. Calculate the difference to the minimum in each iteration.
(a) The function $f: \mathbb{R} \longrightarrow \mathbb{R}$ with $f(x)=\log \left(e^{x}+e^{-x}\right)$ has a unique minimizer $x^{*}=0$. Use the starting values $x^{(0)}=1$ and in a second run $x^{(0)}=1.1$.
(b) The function $g: \mathbb{R}_{>0} \longrightarrow \mathbb{R}$ with $g(x)=-\log (x)+x$ has a unique minimizer $x^{*}=1$. Use the starting value $x^{(0)}=3$.

Hint: Note that $\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ for $x \in \mathbb{R}$.

