Homework 13 in Optimization in Engineering

Prof. Dr. Anke Schmeink, Michael Reyer, Alper Tokel
26.01.2015

Exercise 1. (Newton method with equality constraint) Let

$$
\begin{array}{rc}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

be an optimization problem with

$$
\begin{aligned}
f(\boldsymbol{x}) & =\frac{1}{2} x_{1}^{2} \exp \left(x_{3}\right)+\frac{x_{1}^{3}}{3}-\frac{1}{2}\left(x_{2}+1\right)^{2}+3 x_{1} x_{3}+a\left(x_{2}+x_{3}+1\right), \\
\boldsymbol{x}^{T} & =\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, a \in \mathbb{R}_{+}, \quad \boldsymbol{A}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & -3
\end{array}\right), \text { and } \boldsymbol{b}=\binom{-1}{-2} .
\end{aligned}
$$

(a) Reformulate the problem such that it is an unconstrained optimization problem.
(b) When is the reformulated problem convex?
(c) Solve the problem applying a pure Newton method with step size $t=1, a=2$ and $\left(\boldsymbol{x}^{(0)}\right)^{T}=(1,-2,0)$. What problem is solved for arbitrary parameter a ?
(d) Now utilize exact line search in the Newton method for solving the problem. How many iterations do you need for $\varepsilon=10^{-6}$.

Exercise 2. (Adding a quadratic term in Newton method with equality constraint) Let \boldsymbol{Q} be a matrix, then the problem

$$
\begin{array}{cc}
\text { minimize } & f(\boldsymbol{x})+(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})^{T} \boldsymbol{Q}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}) \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

is equivalent to

$$
\begin{array}{rc}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

(a) Show that the Newton steps for both problems are equal.

