

Prof. Dr. Anke Schmeink, Ehsan Zandi, Yulin Hu

Tutorial 13

Monday, January 18, 2016

Problem 1. (General Barriers) The log barrier is based on the approximation of the indicator function $I_{-}(u)$ with the logarithmic function $-(1/t)\log(-u)$ (Section 7.2.1 in the lecture notes). We can also construct barriers from other approximations, which in turn yield generalizations of the central path and barrier method. Let $h : \mathbb{R} \longrightarrow \mathbb{R}$ be a twice differentiable, closed, increasing convex function with **dom** $h = \mathbb{R}_{<0}$. One such function is $h(u) = \log(-u)$; another example is h(u) = -1/u (for u < 0). Now consider the convex optimization problem (without equality constraints, for simplicity)

minimize
$$f_0(x)$$

subject to $f_i(x) < 0, \quad i = 1, \dots, s,$

where f_i are twice differentiable. We define the h-barrier for this problem as

$$\Phi_h(x) = \sum_{i=1}^s h(f_i(x)),$$

with domain $\{x \mid f_i(x) < 0, i = 1, ..., s\}$. When $h(u) = -\log(-u)$, this is the usual logarithmic barrier; when h(u) = -1/u, Φ_h is called the inverse barrier. We define the *h*-central path as

$$x^*(t) = \operatorname{argmin} tf_0(x) + \Phi_h(x),$$

where t>0 is a parameter.

- a) Explain why $tf_0(x) + \Phi_h(x)$ is convex in x, for each t > 0.
- b) Show how to construct a dual feasible λ from $x^*(t)$. Find the associated duality gap.
- c) For what functions h does the duality gap found in part (b) depend only on t and s?

Problem 2. (Branch-and-bound algorithm for a 0-1 linear program)

- a) A network operator can offer $n \in \mathbb{N}$ different services to its customers with revenues $c_1, \ldots, c_n \in \mathbb{R}$ corresponding to each service. Each service requires a certain bandwidth $v_1, \ldots, v_n \in \mathbb{R}$ within the frequency band available to the network operator, whose width is given as $B \in \mathbb{R}$. A service can at most be offered to one customer. Formulate the optimization problem which maximizes the revenue as an integer linear programming problem.
- **b)** Solve the knapsack problem by using branch-and-bound algorithm for n = 3, and $c_i = v_i$ for $1 \le i \le 3$, where $c_1 = c_2 = 2$, $c_3 = 3$ and B = 6.