

1. Übung zur Theoretischen Informationstechnik II Prof. Dr. Rudolf Mathar, Fabian Altenbach, Michael Reyer 22.04.2010

Aufgabe 1. Bestimmen Sie die differentielle Entropie der folgenden absolut-stetigen Zufallsvariablen.

a) X ist exponentialverteilt mit Parameter $\lambda > 0$, d.h.

$$f(x) = \lambda e^{-\lambda x}, x \ge 0.$$

b) X ist Laplace-verteilt mit Parameter $\lambda > 0$, d.h.

$$f(x) = \frac{1}{2}\lambda e^{-\lambda|x|}, x \in \mathbb{R}.$$

c) X = Y + Z ist Faltung der stochastisch unabhängigen Größen $Y \sim N(\mu_1, \sigma_1^2)$ und $Z \sim N(\mu_2, \sigma_2^2)$.

Aufgabe 2. Gelten die folgenden für die Entropie einer diskreten Zufallsvariablen gültigen Beziehungen auch für die differentielle Entropie?

- a) $H(T(X)) \leq H(X)$,
- $\mathbf{b)} \ \mathrm{H}(X+Y) \le \mathrm{H}(X,Y),$
- c) $H(X + Y) \le H(X) + H(Y)$,
- **d)** $H(X) \ge 0$.

Hinweise:

Zu a) Betrachten Sie T(X) = 2X.

Zu b) Betrachten Sie $X \sim R(0,1), Y \sim R(0,1), X$ und Y stochastisch unabhängig und die Beziehung H(X,Y) = H(X) + H(Y) für stochastisch unabhängige Zufallsvariablen.

Bitte wenden!

Aufgabe 3. Gegeben sei eine BPSK-Modulation mit Amplituden $\mu > 0$ und die Symbole seien gleichverteilt, d.h. mit Wahrscheinlichkeit $\frac{1}{2}$ wird entweder μ oder $-\mu$ gesendet. Das Signal X werde bei der Übertragung von einer additiven, gleichverteilten Rauschleistung auf dem Intervall $\left[-\frac{1}{2},\frac{1}{2}\right]$ gestört, also gilt Y = X + N mit $N \sim R\left(-\frac{1}{2},\frac{1}{2}\right)$ und X und N seien stochastisch unabhängig.

- a) Geben Sie die Dichte f_Y an.
- b) Berechen Sie die differentielle Entropie von f_Y .
- c) Zeichnen Sie die differentielle Entropie von f_Y als Funktion von μ und interpretieren Sie das Ergebnis.