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Abstract— The maximization of a ratio of the form f(x)/x,
with f some “S-curve”, plays a central role in several important
problems involving resource management for data communica-
tion over a wireless medium. This includes decentralized power
control, power and data rate assignment for maximal network
throughput in a 3G-CDMA context, and power and coding rate
choice for multi-media files which have been scalably encoded,
as with the JPEG-2000 and MPEG-4 standards. In this note,
the ratio f(x)/x, where f is a real-valued, univariate “s-shaped”
function, is shown to be quasi-concave, and to always have a
unique global maximizer, which can be identified graphically. The
analysis is strictly based on geometrical properties derived from
the sigmoidal shape, imposing no specific algebraic functional
form (“equation”) on the function. Hence, it applies to a wide
range of practical situations.

I. INTRODUCTION

Many radio resource optimizations of practical interest
depend critically on the maximization of an expression of the
form f(x)/x. The specific function and its argument depend
on the problem being analyzed; but f is, typically, monotoni-
cally increasing. This maximization may be embedded into a
larger optimization.

An example of interest arises when a transmitter with
a limited supply of energy wishes to choose optimally its
transmission power for data communication over a wireless
medium in the presence of interference. Reference [7] dis-
cusses in detail why a ratio of the form f(x)/x makes sense as
an objective function for this situation. When several mutually-
interfering terminals share a wireless channel, a decentral-
ized power-allocation algorithm can be obtained by modeling
each terminal as choosing its transmission power in order
to maximize its own “utility function”, of the form f(x)/x.
Reference [3] provides an introductory discussion based on
several previous works investigating energy management for
wireless data applications, in which the maximization of a
ratio of the form f(x)/x plays a central role. This is also
discussed in [7] for terminals with dissimilar transmission
rates, as expected in 3G networks.

A related, but distinct inquiry is found in [8], a work
relevant to a VSG-CDMA system, a technique part of 3G
standards. This reference seeks centralized power and data
rate allocations for many terminals in order to maximize the
network weighted throughput. It shows that the first-order

optimizing conditions require that some terminals operate with
a signal-to-interference ratio (SIR) which maximizes f(x)/x.

In the applications above, the function f is a simple
transformation of the “frame-success” function, fs, which
yields the probability of success of the transmission of a
data packet, in terms, of the signal-to-interference ratio (SIR).
This function depends on physical attributes of the system,
including the binary modulation technique, the forward error
detection scheme, the nature of the channel, and details of
the receiver. Obtaining an exact expression for this function
for a realistic model of a wireless communication setting
may be prohibitively difficult or impossible. And even when
this function is available, it may be intractable or highly
inconvenient, and highly dependent on the chosen physical
layer configuration. However, one can safely assume that,
whatever this function is, its graph is always “sigmoidal”
(S-shaped), as shown in fig. 1. Therefore, it is desirable to
understand the behavior of the ratio f(x)/x, when all that
is known about f is that its graph is S-shaped. This should
lead to results appropriate for many interesting situations,
regardless of modulation techniques and other physical layer
arrangements.
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Fig. 1. Some S-curves

In other applications, the function in the numerator may
have a completely different meaning. For instance, [6] focuses



on an energy-limited terminal with a long stream of files
to transmit over a wireless channel. The files correspond to
scalably encoded images (as with the JPEG 2000 standard),
which can be truncated at an arbitrary point and decoded.
Two key variables are jointly optimized: transmission power,
and the number of bits of each file to be decoded. In the
analysis, a ratio of the form g(y)/y arises, with g yielding a
measure of the quality of a decoded image, as a function of the
number of bits decoded, y. The function g is also assumed to
be sigmoidal, which is consistent with certain psychophysical
experiments.

There are additional practical reasons why the S shape may
be chosen for modeling a monotonic function of interest. An
arbitrary S-curve starts out convex and smoothly transitions
to concave. But the inflexion (transition) point is arbitrarily
placed. Therefore, this curve in fact contains as special cases
a “mostly” concave curve (inflexion point is “very close” to the
origin) and a “mostly” convex curve (inflexion point is “very
far” from the origin). Furthermore, the “ramp” of the S-curve
may be nearly vertical, in which case the S-curve behaves like
a “step” (threshold) function. Or this “ramp” can approximate
a straight line, in which case the S-curve expresses a near
linear relation. These shapes, shown in fig. 1, accommodate
many situations of interest.

Problems involving the optimization of ratios of functions
have been intensively studied in the last few decades, and are
commonly called “fractional programming”. These problems
arise naturally in many contexts, including macroeconomics,
finance, inventory control, and numerical analysis, among
others. References [2], [10] are very recent surveys of this
literature. However, the most general formulations studied in
this literature involve ratios of concave and convex functions.
In a few cases, the definitions of concavity and/or convexity
are relaxed to include a somewhat larger class of functions.
But, the sigmoidal functions studied herein are, by definition,
neither concave nor convex (very loosely speaking they are
“half and half”), and are, therefore, excluded from the current
fractional programming literature.

This work investigates the maximization of the ratio f(x)/x
for any function f having the specified sigmoidal shape. “Sig-
moidness” is captured in a strictly geometric manner, by as-
suming that the considered function “starts out” convex at the
origin, and “smoothly” transitions to concave as it approaches
a horizontal asymptote. The optimal solution is characterized
strictly in terms of geometrical properties derived from this
shape. Without imposing any particular algebraic functional
form (“equation”) on the considered functions, this note shows
that the solution to this maximization problem always exists,
is unique, and can be graphically described and determined.
Additionally, the ratio f(x)/x is shown to be quasi-concave.

Below, the considered class of functions is formally char-
acterized. Then, the solution to the maximization problem of
interest is derived. Subsequently, the quasi-concavity of the
ratio is established. Finally, some closing comments are given.
An appendix provides and develops certain key technical
results.

II. FORMALIZATION OF THE FUNCTIONS OF INTEREST
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Fig. 2. A representative function and some of its tangents

A. Basic Assumptions

Figure (2) provides a graphical illustration of a function
representative of the class of functions to be considered. Any
such function, f , has the following characteristics:

1) Its domain is the non-negative part of the real line; that
is, the interval [0,∞)

2) Its range is the interval [0, B) , where, for convenience,
and without loss of generality, we take B = 1.

3) It is increasing.
4) (“Initial convexity”) It is strictly convex over the interval

[0, xf ], with xf a positive number.
5) (“Eventual concavity”) It is strictly concave over any

interval of the form [xf , L], where L is a positive number
greater than xf

6) It has a continuous derivative.
Notice that no assumptions about the second derivative of the
function f are explicitly made.

B. Immediately Implied Characteristics

1) Assumptions (1), (2) and (3) imply that f(0) = 0.
2) Assumptions (4) (“initial convexity”) and (5) (“eventual

concavity”) imply that the function is continuous for any
x > 0. (See Theorem 1.3, Chapter III, in reference [1]).
And this implication, together with the preceding one
further imply that f is continuous overall.

3) The “initial convexity” assumption (4) and the con-
tinuous derivative assumption (6) together imply that
f ′(0) < ∞ (See subsections (B.1) and (III-B.1)). This
ensures that limx→0 f(x)/x is finite, by L’Hopital rule

4) Assumption (6) also implies the continuity of f .

III. MAXIMIZATION

Below, the following optimization problem is solved:
Max: f(x)/x subject to 0 ≤ x ≤ M

A. An interior solution

First, it is presumed that a “stationary” point exists within
the allowable range of x.



1) First-order conditions for a maximum: The first-order
necessary conditions are:

f(x) − xf ′(x) = 0 (1)

It will prove useful to observe that the equation of a straight
line tangent, at the point (x1, f(x1)), to the curve described
by the graph of the function f can be written as

g1(x) = f(x1) + f ′(x1)(x− x1) or g1(x) = b(x1) + f ′(x1)x
(2)

where b(x) := f(x) − xf ′(x) represents the ordinate at the
origin (y-intercept) of the straight line tangent at the point
(x, f(x)) to the curve described by the graph of f (see fig.
(2)). Therefore, equation (1) can be stated as b(x) = 0, which
is discussed further in section (III-A.5).

2) Existence of a Solution: A solution to equation (1)
always exists. This follows from these facts:

i) b(x) = f(x) − xf ′(x) is a continuous function.
ii) For sufficiently large xL, b(xL) > 0
iii) For any xv in (0, xf ], b(xv) < 0 .

Statement (i) follows directly from the fact that both
f(x) and f ′(x) have been assumed to be continuous.

Statement (ii) is a direct consequence of the fact that,
by assumption, limx→∞ f(x) = 1. Hence, in the limit, the
tangent line to the graph of f is the line y = 1. The y-intercept
of this line is, of course, 1. So, limx→∞ b(x) = 1, for which
b(x) is bound to take on positive values “sooner or later”.

Statement (iii) follows from the essential property of tangent
lines of continuously differentiable strictly convex functions
(see section (B.1)). Over the interval [0, xf ], f is assumed to
be strictly convex. Taking x2 = 0 and x1 equal to an arbitrary
number in (0, xf ], denoted as xv, inequality (7) yields f(0) >
f(xv) + f ′(xv) · (0 − xv) or, equivalently, b(xv) = f(xv) −
xvf ′(xv) < 0.

Statements (i), (ii), and (iii) above have been shown to be
valid. These three facts imply the existence of an x∗satisfying
b(x∗) = 0, because a continuous function cannot go from a
negative to a positive value without taking on the value zero.

Furthermore, notice that the validity of statement (iii) im-
mediately implies that any such x∗must be greater than xf

(that is, any such x∗must be in the interval over which f is
concave), since, x < xf → b(x) < 0.

3) Uniqueness of the solution: In subsection (III-A.2) it
was established that any solution to b(x) = f(x)−xf ′(x) = 0
must must lie inside the interval where f is strictly concave.
The uniqueness of this solution follows directly from the
“monotone intercepts” corollary, presented in subsection (B.2).
This results indicates that if x1 and x2 are points in an interval
of the real line over which the function f is strictly concave,
then x2 > x1implies that b(x2) > b(x1). Hence, if x∗is such
that b(x∗) = 0, any x �= x∗must be such that b(x) �= 0

4) Optimality of the solution: The derivative of the ratio
f(x)/x can be expressed as

xf ′(x) − f(x)
x2

= −b(x)
x2

(3)

with b(x) as previously defined. The derivative is well-
defined with the possible exception of the boundary value
x = 0. The case x = 0 is discussed in the subsection (III-B).
For the purposes of this section, x is assumed to be positive.

The monotone intercepts corollary of subsection (B.2) spec-
ifies that for any x > x∗, b(x) > b(x∗) = 0. Therefore, the
ratio f(x)/x is strictly decreasing for any x > x∗.

The same argument leads to the conclusion that the ratio
f(x)/x is strictly increasing for any xf < x < x∗.

In subsection (III-A.2) it was established that b(x) < 0 for
any x in (0, xf ]. Therefore, the derivative of the ratio f(x)/x
is positive for any such x, (see equation (3) above), which
means this ratio is increasing over (0, xf ].

In conclusion, the ratio f(x)/x is less than f(x∗)/x∗ for
any positive x �= x∗.

5) Description of the solution: The characteristic tangent:
The solution to the first-order necessary optimizing conditions
given by equation (1) can be directly identified in the graph of
the function f . Only one positive value, x∗, satisfies equation
(1). (x∗, f(x∗)) is the only point at which a line tangent to the
curve describing the function passes through the origin. Thus,
the equation of any such tangent line is g∗(x) = f ′(x∗)x .
(See the tangent line drawn at x∗ in fig. (2)). This tangent line
is termed “the characteristic tangent” of a given sigmoidal
function. Of course, different sigmoids may have the same
characteristic tangent.

The value of the objective function at the solution, x∗,
can be obtained graphically as the slope of the characteristic
tangent, which is f(x∗)/x∗. This observation can be useful
for conceptual “sensitivity analyses”. The effect on the optimal
solution of changing one sigmoid for another (for example via
a change in certain parameter) immediately manifests itself,
visually, through the new characteristic tangent, and its slope.

B. “Boundary” solution

The development so far has ignored the constraint that x ≤
M for some M . Below, this issue is addressed. Before that, the
possibility that the optimal value be zero is formally discarded.

1) The non-optimality of x=0: By construction, and the
application of L’Hopital rule, limx→0 f(x)/x = f ′(0) < ∞
. In sub-sections (III-A.2) and (III-A.4) it was discussed why
the ratio f(x)/x is increasing over the interval (0, xf ]. Hence,
x = 0 is not the maximizer.

2) The global optimality of the smallest of M and x∗:
Given the discussion in subsections (III-A.4) and (III-B.1),
it is clear that the ratio f(x)/x is increasing over the interval
[0, x∗], where x∗ is the only value of x satisfying the first-
order necessary optimizing conditions given by equation (1).
Hence, if the maximum allowable value for x, denoted as M ,
is less than x∗, f(M)/M is the highest achievable value for
the ratio f(x)/x. But if x∗ is less than M , x = x∗ is clearly
the optimizing choice. Therefore, the smallest of the numbers
M and x∗ is the global maximizer.

IV. THE QUASI-CONCAVITY OF f(x)/x

In the preceding development, it has been determined that,
for the class of functions under consideration (see section(II-



A)), the ratio f(x)/x is “single-peaked”; that is, there is a
number x∗ such that this ratio is strictly increasing for all x ∈
[0, x∗) and strictly decreasing for all x ∈ (x∗,∞). This implies
the quasi-concavity of this ratio. For a general discussion about
quasi-concavity and various related concepts and results, see
[5].

Below, the definition of quasi-concavity is given, and the
compliance of f(x)/x with this definition is formally estab-
lished.

A. Definition of Quasi-concavity

Definition: The function h : I → R , defined on an interval
I ⊂ � , is said to be quasi-concave if its upper contour sets,
{x ∈ I : h(x) ≥ t}, are convex sets; that is, for any t ∈ �,
any α ∈ [0, 1], and any x1, x2 ∈ I , h(x1) ≥ t and h(x2) ≥
t imply that

h(αx1 + (1 − α)x2) ≥ t (4)

The function h is said to be strictly quasi-concave if
the implied inequality in (4) holds strictly whenever x1 �=
x2 and α ∈ (0, 1).

B. Verification of Quasi-concavity

The function f(x)/x is strictly quasi-concave.
Proof:
For notational convenience, let h(x) .= f(x)/x and let

h(x∗) .= P ∗.
Let t ∈ (0, P ∗). Notice that verifying (4) is trivial for t

outside this interval.
Suppose 0 ≤ x1 < x2 , h(x1) ≥ t and h(x2) ≥ t
Because h(x) is continuous and strictly increasing in the

interval [0, x∗), there is an x′
t such that h(x) ≥ t for all x

between x′
t and x∗, and h(x) < t for x < x′

t. Likewise,
since h(x) is continuous and strictly decreasing in the interval
(x∗,∞), there is an x′′

t such that h(x) ≥ t for all x between
x∗and x′′

t , and h(x) < t for x > x′′
t .

Then, clearly, any x for which h(x) ≥ t must be between
x′

t and x′′
t , and any x between x′

t and x′′
t is such that h(x) ≥ t

. That is, x′
t ≤ x ≤ x′′

t ⇔ h(x) ≥ t.
Therefore, h(x1) ≥ t and h(x2) ≥ t implies x′

t ≤ x1 <
x2 ≤ x′′

t

And for α ∈ (0, 1), x1 < αx1 + (1 − α)x2 < x2. This
implies x′

t < αx1 + (1 − α)x2 < x′′
t , which further implies

h(αx1 + (1 − α)x2) ≥ t

Q.E.D.

V. CONCLUDING REMARKS

The maximization of the ratio f(x)/x for any function f
having a “sigmoidal” shape has been studied, and its optimal
solution been characterized without assuming any particular
algebraic functional form (“equation”) on the considered func-
tions. “Sigmoidness” has been captured in a strictly geometric
manner, by assuming that the considered functions “start out”
convex at the origin, and “smoothly” transition to concave
as they approach a horizontal asymptote. This geometric

construction had not been found in the scientific literature,
although sigmoidal functions have been studied in numerous
contexts, including in technological, biological and socio-
economic environments. On the basis of geometrical properties
derived from this shape, this note shows that the solution
to the maximization problem of interest always exists, is
unique, and can be graphically described and determined. The
graphical identification of the solution could be valuable as a
conceptual tool to understand the meaning of the solution, as
well as a “sensitivity analysis" tool, to visualize how a change
in the considered function can impact the optimal solution.
Central to the development and fully developed herein, the
observation that the “y-intercepts” of concave and convex
functions are monotonic may be useful beyond the particular
aims of this note. Along the way, the ratio f(x)/x has been
shown to be quasi-concave, which is by no means obvious
given the arbitrary sigmoidal shape of the function in the
numerator. This fact can be beneficial in situations in which
this maximization is embedded into a larger problem, as in
the “game” discussed in references [3], [7], where certain
important theorems and results ( such as Debreu’s “general
equilibrium”) can be invoked because of the quasi-concavity
of this ratio.

The maximization of a ratio of the form f(x)/x, with f
some “S-curve”, is particularly relevant to several important
problems involving resource management for data communi-
cation over a wireless medium. This includes decentralized
power control, [3], [7], power and data rate assignment for
maximal network throughput in a 3G-CDMA context, [8], and
resource management for scalably-encoded visual information,
as with the JPEG-2000 and MPEG-4 standards,[6].
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APPENDIX

Much of this as well as other relevant material can be found
in reference [1], in particular in chapter III. The presentation
here follows that in the mathematical appendix of reference
[4]. However, the material of subsection (B.2) is not found in
those references, and is developed in full here.

A. Concave and convex functions

Consider a function f : I → R , defined on an interval
I ⊂ �.

Definition: The function f is said to be concave if,
∀x1, x2 ∈ I and α ∈ (0, 1),

f(αx1 + (1 − α)x2) ≥ αf(x1) + (1 − α)f(x2) (5)

The function f is said to be strictly concave if the above
inequality holds strictly whenever x1 �= x2.

Definition: The function f is said to be (strictly) convex if
the function −f is (strictly) concave.

B. Properties of continuously differentiable concave and con-
vex functions

1) Tangent line Theorem: The continuously differentiable
function f : I → R , defined on an interval I ⊂ � , is concave
if and only if, ∀x1, x2 ∈ I ,

f(x2) ≤ f(x1) + f ′(x1) · (x2 − x1) (6)

This function is strictly concave if and only if the above
inequality holds strictly ∀ (x1 �= x2) ∈ I .

The function f is convex if and only if, ∀x1, x2 ∈ I ,

f(x2) ≥ f(x1) + f ′(x1) · (x2 − x1) (7)

This function is strictly convex if and only if the above
inequality holds strictly ∀ (x1 �= x2) ∈ I .
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2) The Monotonicity of y-intercepts: Corollary: Let f :
I → R denote a continuously differentiable concave function,
defined on an interval I ⊂ �. Let x0, x1, x2 be elements of
I such that x0 < x1 < x2. Then,

f(x2) + (x0 − x2)f ′(x2) ≥ f(x1) + (x0 − x1)f ′(x1) (8)

If f is strictly concave the above inequality holds strictly.
Proof:
See figure (3). In this development, i ∈ {1, 2}.

First notice that gi(x) = f(xi) + f ′(xi)(x − xi) denotes the
equation of a line tangent at the point (xi, yi) (yi

.= f(xi))
to the the curve describing the graph of f .

Let bi
.= f(xi) + (x0 − xi)f ′(xi).

Thus, bi is the “height” of tangent line Li at the abscissa x0,
or its “intercept” with a vertical line drawn at x0. Hence,
inequality (8) can be restated as b2 > b1. In the special case
x0 = 0, bi become the “y-intercept” or ordinate at the origin
of the line Li.

Let ∆1
.= g2(x1) − y1 and ∆2

.= g1(x2) − y2.

Geometrically, ∆1 is the length of the segment Q1R1, which
equals the difference between the “height” of the tangent L2

and the value of the function f , both measured at the
abscissa x1. ∆2 has an analogous interpretation.

Observe that the points (x0, b1), Q1 and R2 are all in the
line L1.

Likewise, (x0, b2), R1 and Q2 are all in the line L2.
Therefore:

y1 − b1

x1 − x0
=

y2 + ∆2 − b1

x2 − x0
⇒

b1 =
(x2 − x0)y1 − (x1 − x0)(y2 + ∆2)

x2 − x1
(9)

y2 − b2

x2 − x0
=

y1 + ∆1 − b2

x1 − x0
⇒

b2 =
(x2 − x0)(y1 + ∆1) − (x1 − x0)y2

x2 − x1
(10)

Consequently:

b2 − b1 =
(x2 − x0)∆1 + (x1 − x0)∆2

x2 − x1
(11)

By construction, x0 < x1 < x2.
By inequality (6), both ∆1 and ∆2 are non-negative, and both
are positive if f is strictly concave.
Therefore, the right hand side of equation (11) is non-negative,
and it is positive, if f is strictly concave.
That is, if f is concave, b2 ≥ b1, and b2 > b1if f is strictly
concave.

Q.E.D.

Given the fact that −f is concave whenever f is convex (see
section(A)), the following result is immediate:

Corollary: Let f : I → R denote a continuously differentiable
convex function, defined on an interval I ⊂ �. Let
x0, x1, x2 be elements of I such that x0 < x1 < x2. Then,

f(x2) + (x0 − x2)f ′(x2) ≤ f(x1) + (x0 − x1)f ′(x1) (12)

If f is strictly convex the above inequality holds strictly.


